Nothing Special   »   [go: up one dir, main page]

Connor JA, Stevens CF. (1971). Voltage clamp studies of a transient outward membrane current in gastropod neural somata. The Journal of physiology. 213 [PubMed]

See more from authors: Connor JA · Stevens CF

References and models cited by this paper
References and models that cite this paper

Bose A, Manor Y, Nadim F. (2004). The activity phase of postsynaptic neurons in a simplified rhythmic network. Journal of computational neuroscience. 17 [PubMed]

De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of neurophysiology. 71 [PubMed]

Destexhe A, Sejnowski TJ. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological reviews. 83 [PubMed]

Doiron B, Longtin A, Turner RW, Maler L. (2001). Model of gamma frequency burst discharge generated by conditional backpropagation. Journal of neurophysiology. 86 [PubMed]

Ellis LD, Krahe R, Bourque CW, Dunn RJ, Chacron MJ. (2007). Muscarinic receptors control frequency tuning through the downregulation of an A-type potassium current. Journal of neurophysiology. 98 [PubMed]

Fohlmeister JF, Miller RF. (1997). Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. Journal of neurophysiology. 78 [PubMed]

Getting PA. (1983). Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. Journal of neurophysiology. 49 [PubMed]

Kanold PO, Manis PB. (1999). Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Kanold PO, Manis PB. (2001). A physiologically based model of discharge pattern regulation by transient K+ currents in cochlear nucleus pyramidal cells. Journal of neurophysiology. 85 [PubMed]

Korngreen A, Kaiser KM, Zilberter Y. (2005). Subthreshold inactivation of voltage-gated K+ channels modulates action potentials in neocortical bitufted interneurones from rats. The Journal of physiology. 562 [PubMed]

Lamb DG, Calabrese RL. (2013). Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PloS one. 8 [PubMed]

Liu CY, Xiao C, Fraser SE, Lester HA, Koos DS. (2012). Electrophysiological characterization of Grueneberg ganglion olfactory neurons: spontaneous firing, sodium conductance, and hyperpolarization-activated currents. Journal of neurophysiology. 108 [PubMed]

Masurkar AV, Chen WR. (2011). Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience. 192 [PubMed]

Pelz C, Jander J, Rosenboom H, Hammer M, Menzel R. (1999). IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. Journal of neurophysiology. 81 [PubMed]

Rothman JS, Manis PB. (2003). The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. Journal of neurophysiology. 89 [PubMed]

Sakurai A, Darghouth NR, Butera RJ, Katz PS. (2006). Serotonergic enhancement of a 4-AP-sensitive current mediates the synaptic depression phase of spike timing-dependent neuromodulation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Sanchez RM, Surkis A, Leonard CS. (1998). Voltage-clamp analysis and computer simulation of a novel cesium-resistant A-current in guinea pig laterodorsal tegmental neurons. Journal of neurophysiology. 79 [PubMed]

Sheasby BW, Fohlmeister JF. (1999). Impulse encoding across the dendritic morphologies of retinal ganglion cells. Journal of neurophysiology. 81 [PubMed]

Sterratt DC, Graham B, Gillies A, Willshaw D. (2011). Principles of Computational Modelling in Neuroscience, Cambridge University Press.

Takashima A, Takahata M. (2000). Electrophysiological and theoretical analysis of depolarization-dependent outward currents in the dendritic membrane of an identified nonspiking interneuron in crayfish. Journal of computational neuroscience. 9 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.