Nothing Special   »   [go: up one dir, main page]

Markram H, Wang Y, Tsodyks M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]

See more from authors: Markram H · Wang Y · Tsodyks M

References and models cited by this paper
References and models that cite this paper

Aguiar P, Willshaw D. (2004). Hippocampal mossy fibre boutons as dynamical synapses Neurocomputing. 58

Barak O, Tsodyks M. (2007). Persistent activity in neural networks with dynamic synapses. PLoS computational biology. 3 [PubMed]

Barros-Zulaica N et al. (2019). Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex Frontiers in Synaptic Neuroscience. 11

Bieda MC, Copenhagen DR. (2000). Inhibition is not required for the production of transient spiking responses from retinal ganglion cells. Visual neuroscience. 17 [PubMed]

Booth V, Bose A. (2002). Burst synchrony patterns in hippocampal pyramidal cell model networks. Network (Bristol, England). 13 [PubMed]

Brette R, Goodman DF. (2011). Vectorized algorithms for spiking neural network simulation. Neural computation. 23 [PubMed]

Brette R et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience. 23 [PubMed]

Budd JM. (2005). Theta oscillations by synaptic excitation in a neocortical circuit model. Proceedings. Biological sciences. 272 [PubMed]

Buonomano DV. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS computational biology. 4 [PubMed]

Costa RP, Froemke RC, Sjöström PJ, van Rossum MC. (2015). Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. eLife. 4 [PubMed]

Costa RP, Sjöström PJ, van Rossum MC. (2013). Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits. Frontiers in computational neuroscience. 7 [PubMed]

David F, Courtiol E, Buonviso N, Fourcaud-Trocmé N. (2015). Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro. 2 [PubMed]

Durstewitz D, Gabriel T. (2007). Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35

Esposito U, Giugliano M, Vasilaki E. (2014). Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity. Frontiers in computational neuroscience. 8 [PubMed]

Farokhniaee A, McIntyre CC. (2019). Theoretical principles of deep brain stimulation induced synaptic suppression. Brain stimulation. 12 [PubMed]

Fountas Z, Shanahan M. (2017). The role of cortical oscillations in a spiking neural network model of the basal ganglia. PloS one. 12 [PubMed]

Fuhrmann G, Segev I, Markram H, Tsodyks M. (2002). Coding of temporal information by activity-dependent synapses. Journal of neurophysiology. 87 [PubMed]

Gabbiani F, Cox SJ. (2010). Mathematics for Neuroscientists.

Gidon A, Segev I. (2012). Principles governing the operation of synaptic inhibition in dendrites. Neuron. 75 [PubMed]

Goodman DFM, Brette R. (2013). Brian simulator Scholarpedia. 8(1)

Haeusler S, Maass W. (2007). A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Hass J, Hertäg L, Durstewitz D. (2016). A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity. PLoS computational biology. 12 [PubMed]

Hayut I, Fanselow EE, Connors BW, Golomb D. (2011). LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS computational biology. 7 [PubMed]

Helmstaedter M, Staiger JF, Sakmann B, Feldmeyer D. (2008). Efficient recruitment of layer 2/3 interneurons by layer 4 input in single columns of rat somatosensory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Hennig MH, Postlethwaite M, Forsythe ID, Graham BP. (2008). Interactions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Held. The Journal of physiology. 586 [PubMed]

Houweling AR et al. (2002). Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. The Journal of physiology. 542 [PubMed]

Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. (2024). Myelin dystrophy impairs signal transmission and working memory in a multiscale model of the aging prefrontal cortex. eLife. 12 [PubMed]

Jalil S, Grigull J, Skinner FK. (2004). Novel bursting patterns emerging from model inhibitory networks with synaptic depression. Journal of computational neuroscience. 17 [PubMed]

Joshi P, Maass W. (2005). Movement generation with circuits of spiking neurons. Neural computation. 17 [PubMed]

Karmarkar UR, Buonomano DV. (2007). Timing in the absence of clocks: encoding time in neural network states. Neuron. 53 [PubMed]

Knüsel P, Wyss R, König P, Verschure PF. (2004). Decoding a temporal population code. Neural computation. 16 [PubMed]

Kotaleski JH et al. (2011). Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact Front. Syst. Neurosci.. 5:57

Körding KP, König P. (2001). Supervised and unsupervised learning with two sites of synaptic integration. Journal of computational neuroscience. 11 [PubMed]

Laing CR, Chow CC. (2002). A spiking neuron model for binocular rivalry. Journal of computational neuroscience. 12 [PubMed]

Lee CC, Anton M, Poon CS, McRae GJ. (2009). A kinetic model unifying presynaptic short-term facilitation and depression. Journal of computational neuroscience. 26 [PubMed]

Legenstein R, Naeger C, Maass W. (2005). What can a neuron learn with spike-timing-dependent plasticity? Neural computation. 17 [PubMed]

Legenstein R, Pecevski D, Maass W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS computational biology. 4 [PubMed]

Lonardoni D et al. (2017). Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks. PLoS computational biology. 13 [PubMed]

Maass W, Joshi P, Sontag ED. (2007). Computational aspects of feedback in neural circuits. PLoS computational biology. 3 [PubMed]

Maass W, Sontag ED, Joshi P. (2006). Principles of real-time computing with feedback applied to cortical microcircuit models. Advances in Neural Information Processing Systems. 18

MacLeod KM, Horiuchi TK, Carr CE. (2007). A role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem. Journal of neurophysiology. 97 [PubMed]

Markram H, Maass W, Haeusler S. (2003). Perspectives of the high dimensional dynamics of neural microcircuits from the point of view of low dimensional readouts. Complexity (special issue on Complex Adaptive Systems). 8(4)

Markram H et al. (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 163 [PubMed]

Masquelier T, Deco G. (2013). Network bursting dynamics in excitatory cortical neuron cultures results from the combination of different adaptive mechanisms. PloS one. 8 [PubMed]

Puccini GD, Sanchez-Vives MV, Compte A. (2006). Selective detection of abrupt input changes by integration of spike-frequency adaptation and synaptic depression in a computational network model. Journal of physiology, Paris. 100 [PubMed]

Richardson MJ, Melamed O, Silberberg G, Gerstner W, Markram H. (2005). Short-term synaptic plasticity orchestrates the response of pyramidal cells and interneurons to population bursts. Journal of computational neuroscience. 18 [PubMed]

Richert M, Nageswaran JM, Dutt N, Krichmar JL. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers in neuroinformatics. 5 [PubMed]

Romani S, Amit DJ, Mongillo G. (2006). Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. Journal of computational neuroscience. 20 [PubMed]

Rudolph M, Destexhe A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural computation. 18 [PubMed]

Rudolph M, Destexhe A. (2006). Event-based simulation strategy for conductance-based synaptic interactions and plasticity Neurocomputing. 69

Sejnowski TJ, Steriade M, Timofeev I, Houweling AR, Bazhenov M. (1999). Cortical and thalamic components of augmenting responses: A modeling study Neurocomputing. 26-27

Sussillo D, Toyoizumi T, Maass W. (2007). Self-tuning of neural circuits through short-term synaptic plasticity. Journal of neurophysiology. 97 [PubMed]

Testa-Silva G et al. (2012). Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. Cerebral cortex (New York, N.Y. : 1991). 22 [PubMed]

Thomson AM. (2003). Presynaptic frequency- and pattern-dependent filtering. Journal of computational neuroscience. 15 [PubMed]

Torres JJ, Cortes JM, Marro J, Kappen HJ. (2007). Competition between synaptic depression and facilitation in attractor neural networks. Neural computation. 19 [PubMed]

Tsodyks M, Pawelzik K, Markram H. (1998). Neural networks with dynamic synapses. Neural computation. 10 [PubMed]

Tsodyks M, Uziel A, Markram H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Vasilaki E, Giugliano M. (2014). Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PloS one. 9 [PubMed]

Yang Z, Hennig MH, Postlethwaite M, Forsythe ID, Graham BP. (2009). Wide-band information transmission at the calyx of Held. Neural computation. 21 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.