Nothing Special   »   [go: up one dir, main page]

Loss of phase-locking in non-weakly coupled inhib. networks of type-I neurons (Oh and Matveev 2009)

... Here we examine the loss of synchrony caused by an increase in inhibitory coupling in networks of type-I Morris–Lecar model oscillators, which is characterized by a period-doubling cascade and leads to mode-locked states with alternation in the firing order of the two cells, as reported recently by Maran and Canavier (J Comput Nerosci, 2008) for a network of Wang-Buzsáki model neurons. Although alternating-order firing has been previously reported as a near-synchronous state, we show that the stable phase difference between the spikes of the two Morris–Lecar cells can constitute as much as 70% of the unperturbed oscillation period. Further, we examine the generality of this phenomenon for a class of type-I oscillators that are close to their excitation thresholds, and provide an intuitive geometric description of such “leap-frog” dynamics. ..."

Model Type: Realistic Network

Cell Type(s): Abstract Morris-Lecar neuron

Model Concept(s): Activity Patterns; Temporal Pattern Generation; Synchronization; Simplified Models

Simulation Environment: MATLAB (web link to model)

References:

Oh M, Matveev V. (2009). Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. Journal of computational neuroscience. 26 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.