TECHNISCHE UNIVERSITAT MUNCHEN

Fakultét fiir Informatik
Computer Aided Medical Procedures & Augmented Reality / 116

Point Cloud Computing for
Rigid and Deformable 3D Object Recognition

Bertram Heinrich Drost

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Darius Burschka
Priifer der Dissertation:

1. Univ.-Prof. Dr. Nassir Navab

2. Univ.-Prof. Dr. Vincent Lepetit, TU Graz

Die Dissertation wurde am 21. Juni 2016 bei der Technischen Universitit Miinchen
eingereicht und durch die Fakultit fiir Informatik am 1. November 2016 angenommen.






Abstract

Machine vision is a technologically and economically important field of computer
vision. It eases automatization of inspection and manipulation tasks, which in turn
enables cost savings and quality improvement in industrial processes. Usually, 2D or
intensity images are used for such applications. However, thanks to several technological
advances, nowadays there are sensors available that allow depth or 3D measurements
with high resolution, frequency and accuracy at a reasonable cost. Such 3D data enables
new applications that are difficult or impossible to implement with 2D images only.

This work develops several performant, robust and accurate algorithms for processing
such 3D data. The algorithms were developed with the requirements of industrial image
processing in mind. They are, however, applicable to other areas such as robotics and
reverse engineering as well. Two fundamental challenges are solved in this work: The
tast localization of 3D points that neighbor a given query point and the detection of rigid
and deformable objects in 3D point clouds or in multimodal data. Additionally, a fast
and robust method for refining the position of two point clouds is presented and some
fundamental algorithms regarding rotations are discussed.

For the detection of nearest neighbors in 3D point clouds, a voxel-based method is
introduced that allows almost constant lookup times of O(log(log(N))). Additionally, in
contrast to prior art, lookup times are almost independent of the distribution of query
and data points, allowing the use of this method in real-time systems. A variant of
the method that allows for approximate nearest neighbor lookups further improves the
required time for creating the underlying data structure.

For the detection of rigid and deformable objects in 3D and multimodal data, a local
variant of the Hough transform is introduced that circumvents the usual problems of
voting schemes over high-dimensional parameter spaces. The very robust, fast, and
generic baseline method detects rigid objects in 3D point clouds. It works for arbitrary
free-form objects and different 3D sensors alike and can cope with large amounts of
clutter, noise, occlusion, sparse data and multiple object instances.

Three variants of the baseline method are introduced that detect rigid objects in
multimodal data, geometric primitives in 3D point clouds, and deformable objects in 3D
point clouds. For this, the parameter space, the used feature, the model representation
and the number of voting rounds of the original method are modified according to the
type of data and model. All methods are evaluated using up-to-date datasets.

ii






Zusammenfassung

Ein technologisch und wirtschaftlich wichtiges Anwendungsgebiet der computerge-
stiitzten Bildverarbeitung ist die industrielle Bildverarbeitung. Diese vereinfacht vielfach
die Automatisierung industrieller Inspektions- und Manipulationsaufgaben, was Kosten-
einsparungen und Qualitdtsverbesserungen ermoglicht. Klassischerweise werden dafiir
Intensitéts- oder 2D-Bilder verwendet. Dank diverser technologischer Fortschritte sind
heute allerdings auch preiswerte Sensoren verfiigbar, die Tiefen- oder 3D-Aufnahmen mit
hoher Auflosung, Frequenz und Genauigkeit liefern. Derartige 3D-Daten ermoglichen
Anwendungen die mit 2D-Bildern nicht oder nur schwer 16sbar sind.

Diese Arbeit entwickelt mehrere schnelle, robuste und genaue Verfahren zur Verarbei-
tung derartiger 3D-Daten. Die Verfahren wurden in Hinblick auf typische Anforderungen
der industriellen Bildverarbeitung entwickelt, sind aber auch in anderen Bereichen wie
der Robotik oder dem Reverse Engineering einsetzbar. Zwei Kernprobleme werden dabei
gelost: Das schnelle Finden von Punkten, die in der Nihe eines gegebenen Punktes liegen,
sowie die Lagebestimmung von starren und deformierbaren Objekten in 3D bzw. multi-
modalen Daten. Zusétzlich wird ein robustes und schnelles Verfahren zur Verfeinerung
der Lage zweier Punktwolken vorgestellt sowie einige algorithmische Grundlagen zu
Rotationen aufgearbeitet.

Fiir das Auffinden nédchster Nachbarn in 3D-Punktwolken wird ein Voxelbasiertes
Verfahren vorgestellt, welches ein anndhernd konstante Suchzeit von O(log(log(N)))
ermoglicht, die zuséatzlich, anders als frithere Ansitze, grofitenteils unabhéngig von der
Verteilung der Daten- und Suchpunkte ist. Eine darauf aufbauende approximative Suche
ermdglicht zusitzlich ein schnelles generieren der zugrundeliegenden Datenstrukturen.

Fiir die Lagebestimmung starrer und deformierbarer Objekte in 3D und multimo-
dalen Daten wird eine Variation der Hough-Transformation vorgestellt, welche die
tiblichen Fallstricke dieser Methode bei hochdimensionalen Parameterraumen durch eine
lokale, datengetriebene Parametrisierung der Objektlage umgeht. Das duflerst robuste,
schnelle und allgemeine Basisverfahren findet starre Objekte in 3D-Punktwolken. Es
funktioniert fiir beliebige Freiformflichen und verschiedenste 3D-Sensoren und kann mit
groflen Mengen an Storpunkten, Rauschen, Verdeckungen, diinnen Daten und mehreren
Objektinstanzen umgehen.

Vom Basisverfahren ausgehend werden weitere Verfahren fiir die Detektion von star-
ren Objekten in multimodalen Daten, von geometrischen Primitiven in 3D-Punktwolken
sowie von deformierbaren Objekten in 3D-Punktwolken vorgestellt. Dazu werden der
Parameterraum, die verwendeten Merkmale, die Modelldarstellung sowie die Anzahl
der Abstimmungsrunden des Verfahrens entsprechend der Daten und des Modells
modifiziert. Alle vorgestellten Verfahren werden anhand aktueller Datensitze evaluiert.






Acknowledgments

This work would not have been possible without the help and support of many
people, whom I have the pleasure to thank here.

At CAMPAR, the chair I was lucky to be a part of, Dr. Slobodan Ilic for his extensive
and valuable guidance over the years and countless fruitful discussions. Prof. Dr. Nassir
Navab for his inspiration, motivation and for creating and encouraging the collaborative
and productive atmosphere at CAMPAR. All other members of the vision group -
Alexander, Benoit, Cedric, Christian, Danilo, David, Federico, Paul, Sebastian, Stefan?,
Tolga, Vasilis, Vladimir, and many more - for all their support.

At MVTec, who supported this work, Prof. Carsten Steger for seeing the opportunity
of 3D machine vision and for initiating this project. Dr. Markus Ulrich for his support
and advice. And all other colleagues at MVTec who were more than helpful along the
way, especially Andreas for paving the way.

Finally, all of my family, who always stood behind me. Christine, for waiting patiently
while I was busy. Astrid, for peanut-proofing papers. My parents, on whose shoulders
I stand. And most importantly Georgiana, for her never-ending love, motivation, and
encouragement — and patience, when I was running in circles when late-night deadlines
approached. This would not have been possible without you.

vii






Contents

Abstract
Zusammenfassung
Acknowledgments
Contents

Outline

I Introduction and Basics

1 Introduction

1.1 Background and Motivation . . . . ... ... .. ... 0L
1.2 Objectives . . . .. .. ... .
1.3 Publications . . . . . . . . e

Notations and Fundamentals

21 3DRotations . . . . . . ...
2.1.1 Parametrizations . . . . ... .. . ... ...
212 Comparing 3D Rotations . . . ... ..................
21.3 Findinga Rotation . . ... ... ... ... ... ... ......

2.2 BasicOperationsin3D . . ... .. ... ... ... ... .........
22.1 Finding an Orthogonal Vector . .. ... ... ... ... .. ....
2.2.2 Finding the Unsigned Angle between Vectors . . . ... ... ...
2.2.3 Finding the Signed Angle between Vectors . . . . . ... ... ...
224 Comparing Rigid Transformations . . . . . . ... ... ... ....

23 Sampling . . .. ... e

X

iii

vii

ix

xiii

0 O W W



II Nearest Neighbors and Pose Refinement in 3D

3 Voxel-Hash Based Nearest Neighbor Search

3.1 Introduction . .. . ... . . .. ..
3.2 Related Work . . . ... . . . . . . e
3.3 Method . . . . . . ... e
3.3.1 Notation and Overview . . . ... ... ... ... ... .......
3.32 Octree Creation . . . . . . . . . . . i ittt
333 HashTable. . . ... ... .. . . .. .. e
334 Degenerated Cases . . . .. ... ....... ... .. ......
3.3.5 Generalizations to Higher Dimensions . . . . ... ... ......
3.3.6 Approximate Methods . . . .. ... .... ... ... .. ... ...
34 Experiments . . . ... ... ...
34.1 Data Structure Creation . . . ... ... ... .. ... ........
3.4.2 Synthetic Datasets . . ... ... ............ . ... ....
34.3 Real-World Datasets . . . .. ... ... ... .. .. .........
3.44 Approximate Method . ... ... ... ... .. ... .. . ...
35 Conclusion . . . . . . . . e e e

4 A Variant of the Iterative Closest Points Algorithm

41 Introduction and Related Work . . . .. ... .. ... .. ..... .. ...
42 Two-Cloud Registration . . . . ... .. ... .................
421 Method. ... ... ... . ...
422 Experiments . . .. ... ... ... ... o
43 Multi-Cloud Registration . . . . ... .. ...................
431 Method. .. ... ... . ...
432 Experiments . .. ... .. .. .. ... ...
44 Parallelization . . . .. ... ... ...
45 Coarse-to-Fine . . . .. .. ... ...
46 Conclusion . . . . ... ..

III Matching in 3D Point Clouds

5 Rigid Object Detection in 3D Point Clouds: A Local Voting Scheme

5.1 Introduction . .. . ... . . . . . . ..
522 Related Work . . . . .. . . . . . .. e
5.3 Rigid Object Detectionin3D . ... ... ... ... .............
5.3.1 3D Point Pair Features . . . . . . . ... ... ... ... ......
53.2 Point Pair Matching . . . ... ... ... ... .. .. . .. ...
5.3.3 Local Coordinates . .. ... .. ... ... ... ... ... .0...
534 VotingScheme . ... ... ... ... ... ... .. .. ... ...
53.5  (Efficient Voting . . . .. .. ... ... ... ... . ...
5.3.6 Analysis of the Voting Space . . .. ... ... ... ... ......

27

29
29
30
31
31
32
34
35
36
36
40
41
42
42
43
43

47
47
49
49
55
58
58
62
63
64
65

69




537 PoseClustering . . . . ... ... ... ... ... .. ... ...
53.8 (EfficientScoring . . ... ... ... .. L oo
539 Detection Pipeline . . . ... .......... .. .. ........
53.10 Complexity Analysis . . . . .. ... ... ... ... ... ...
54 Experiments . . .. .. ... ... e
54.1 SyntheticData .. ............ ... ... .. ... ...
542 RealData ... .. ... ... . . ... e
5.4.3 Feature Distribution . . ... ... ... ... ... ..........
544 Timingsand Counts . ... .. ... .. ... ... ........
55 Conclusion . . . . . . . . e e e

Rigid Object Detection in Multimodal Data

6.1 Introduction . . . . . . . . . . ...
6.2 Related Work . . . . ... . . .. . . . . e
6.3 Method . . . . .. . . . . . e
6.3.1 Multimodal Feature . ... .......................
6.3.2 Model Description . . .. ............ .. .. ........
6.33 VotingScheme .. ... .. ... ... ... ... .. .. ... ...
6.4 Experiments . . ... ... ... ... ... e
6.4.1 Quantitative Evaluation . . . ... ... ... ... ... .......
6.4.2 Qualitative Evaluation . . . . .. .. .. ... ... .. .. .. ....
6.5 Conclusion . . . . . . . . . e e e

Primitive Shape Detection in 3D Point Clouds

7.1 Introduction and Related Work . . . . . ... ... ... .. .. .. .....
72 Method . . . . .. . ... e
7.2.1 Detection Pipeline . . ... .. ... ... .. ... ... ......
722 Local Parameter Space . . . . . ... .. .. ... .. ... ......
723 PointPairs . . .. ... ... .. e
724 Refinement . ... ... .. .. ...
7.3 Theoretical Comparison with RANSAC . . ... ...............
74 Experiments . . ... ... ... ...
741 Refinement . .. ... ... ... .. .. ...
74.2 Detection - Quantitative . . . . . .. ... ... ... ...
743 Detection - Qualitative . . . . .. .. ... ...
75 Conclusion . . . . . . . . e e

Deformable 3D Object Detection in 3D Point Clouds

8.1 Introduction and Related Work . . . . .. .. .. ... ... ... ......
82 Method . . . . .. . . . . e
8.2.1 Model Generation . . ... .......................
8.2.2 Vertex Parametrization. . . . . ... ... ... ... ... ... ...
8.2.3 Graph Creation and Local Voting Scheme . . . ... ... ... ..
824 GraphMatching . ... ................. . ... ...,

113
113
115
116
117
120
121
122
122
125
125

127
128
130
130
133
134
138
141
141
142
143
143
144

153
153
155
156
157
158
159

xi



8.2.5 Dominant Consistent Subgraph Extraction . . . .. ... ... ... 160

83 Experiments . . ... ... .. ... .. e 162
8.3.1 Quantitative . . . . . .. ... 162
8.3.2 Qualitative . . . . . .. ... 164

84 Conclusion . . . . . . . . . .. e e 164

Conclusion 169

91 Summary . . . . ... ... 169

92 DependentWork . ... ... ... ... ... . L L o 170

9.3 Future Work . . . . . . . . e 172

xii



Outline of the Thesis

PART [: INTRODUCTION AND BAsics

CHAPTER 1: INTRODUCTION

motivates this work and gives an overview of the challenges and solutions.

CHAPTER 2: NOTATIONS AND FUNDAMENTALS
gives an overview of the used notation and introduces some of the basic
mathematical concepts and algorithms used in this work.

PART II: NEAREST NEIGHBORS AND PPOSE REFINEMENT IN 3D

of this thesis presents and explores two fundamental algorithms which stand for
themself.

CHAPTER 3: VOXEL-HASH BASED NEAREST NEIGHBOR SEARCH
introduces a novel method for solving the nearest-neighbor problem in
3D. It uses an octree-based discretization of space that is built on top of a
Voronoi tesselation of the input points and optimizes access to the octree
using a hash table. This results in an almost constant lookup time. An
approximate variant of the nearest neighbor scheme is presented which is
faster for both lookup and data structure creation.

CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM
presents a variant of the iterative closest points (ICP) method, an algorithm
that optimizes a given rigid transformation between two 3D point clouds
by minimizing the distances between the clouds. It discusses in detail
the design choices and also presents a variant that optimizes the poses of
multiple point clouds w.r.t. each other simultaneously.

PArT III: MATCcHING IN 3D PoinT CLOUDS

presents four methods for detecting and localizing 3D objects in 3D data. The
methods differ in the type of objects they detect (free-form vs. primitives), the
type of transformations they recover (rigid vs. deformable) and the type of data
they use (3D only vs. multimodal). All four methods are based on a common
baseline method which is presented in the first of the four chapters.

xiii



CHAPTER 5: RiGip OBjecT DETECTION IN 3D PoIiNT CLouDps: A LocAL VOTING

SCHEME
presents a method for detecting rigid 3D objects in 3D point clouds, using a
Hough-transform like voting scheme that operates on a data-driven, local
parameter space. It uses features that describe pairs of 3D points in an
invariant way. This method is the baseline method for the subsequent
chapters, which modify the voting scheme in one or more aspects. It is
therefore longer than the others and explores the aspects of the voting
scheme in more detail.

CHAPTER 6: RiGip OBJECT DETECTION IN MULTIMODAL DATA
presents a method for detecting rigid 3D objects in multimodal RGB-D
data. Different from the baseline method, it uses a novel multimodal point
pair descriptor that combines invariant and robust information from both
modalities.

CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIiNT CLOUDS
shows how the baseline method can be modified to detect primitive, sym-
metric shapes (planes, spheres and cylinders) in 3D point clouds. Compared
to the free-form detector, the symmetries of the shapes are used to both
reduce the parameter space and to optimize the feature matching.

CHAPTER 8: DEFORMABLE 3D OBjECT DETECTION IN 3D PoinT CLOUDS
presents a way of finding deformable 3D objects in 3D point clouds. It
embedds the voting scheme into a graph matching framework to performs
an iterative, re-weighted voting. Based on a few example deformations
of the object, the deformed point pair features are trained, allowing the
detection of model-free deformations.

Xiv



Part 1

Introduction and Basics






Introduction

1.1 Background and Motivation

Machine Vision Ever since the dawn of electronic image capturing devices,
machine vision is a driving factor behind the increased automation of industrial
processes. As part of automated feedback control systems, it allows to both
reduce labor costs and raise the overall product quality, up to high-volume zero-
defect production chains. In the broadest sense, machine vision systems act as
sensors in feedback control systems. More specifically, machine vision allows to
solve a wide variety of control, inspection and manipulation tasks. Thanks to a
large array of different components for lighting, lenses, sensors, and software
and thanks to being contact-less, it is applicable to a wide range of industrial
scenarios [132].

The advantages of using Machine Vision for different tasks are numerous.
Overall and in the long term, it reduces costs and raises quality. On a more
detailed level, machine vision

* allows early detection of departures from given tolerances, which in turn
allows both immediate correction of processing parameters as well as cost-
saving removals of defective parts early in the production process;

* is able to operate consistently around the clock, avoiding unnoticed mistakes
due to, for example, lack of concentration;

* can be fast, sometimes allowing the inspection of thousands of parts per
second;

* is often cheaper than human labor in the long run, an advantage that
increases with falling hardware and raising labor costs;!

IThe economic and social implication of increased automation are beyond the scope of this work. In the
short term, automation of processes often leads to job loss and sometimes social unrest. In the long term
and more positively, it can free people from exhausting or dangerous production environments, increases

3



CHAPTER 1: INTRODUCTION

* is able to measure orders of magnitude more accurately than the human
eye; and

e allows for the perception of microscopic structures that are beyond the
capabilities of humans.

Machine vision is closely related to computer vision, and the two fields often
overlap. Compared to computer vision, machine vision applications often have
stricter requirements regarding processing speed, accuracy, robustness and ease
of configuration. This is feasible because machine vision applications are typically
deployed in more controlled environments that are optimized regarding the given
task and that show little variation over time. Environment and system parameters
such as lighting, exposure time, focal length, aperture settings, working distance
and others are optimized for the particular setup and often remain unchanged
over the lifetime of the system.

3D Machine Vision Traditional machine vision is to a large degree based on
the processing of 2D images [132]. This includes the processing of 3D data,
which is often acquired and processed in the form of range images, for example
by thresholding heights or comparing to reference range images. Even though
such image-based algorithms work for a wide range of applications, full-fledged,
non-image-based 3D methods that directly process 3D point clouds, 3D meshes
or other kind of 3D data allow for an even wider range of challenges to be solved.
For example, localizing free-form texture-less objects is significantly more difficult
when using 2D images only, as is finding defects on the surface of such free-form
objects.

Over the last four decades, advances in microelectronics lead to systems that
today are over a million times faster at comparable prices [94]. Additionally,
especially over the last decade, advances in electronics lead to 3D sensors and
acquisition devices that are more available, more robust, more accurate and less
expensive. Today, one can choose from a multitude of different 3D input devices
that cover a large range of different characteristics, such as time-of-flight sensors,
radar and LIDAR scanners, precalibrated stereo systems working in the visible or
infrared spectrum, or structured light sensors.

This thesis tackles one of the remaining reasons for the lack of wide-spread
3D machine vision: The lack of generic 3D data and point cloud processing
algorithms that fulfill the industrial requirements and that are able to solve the
typical challenges arising in industrial setups.

productivity, thus generating economical growth, and is often a key for mass-producing complex technology
which thus becomes cheaper and more available. Nevertheless, the past has seen multiple riots by workers
who were replaced by machines. The first were probably weavers who were replaced on large scales by the
semiautomatic power looms in the beginning of the 19th century. [143, 33]

4



1.1 BACKGROUND AND MOTIVATION

Acquisition Methods Numerous sensors, devices and methods for acquiring
3D data are available today, and many more were proposed in the literature.
The particular method for a setup is usually chosen depending on the specific
application’s requirements, such as the required accuracy, cycle times, object and
scene dimensions, object and surface characteristics, costs, complexity and ease
of use, mounting restrictions, environmental conditions, and others.

Apart from those characteristics, 3D acquisition methods can also be cate-
gorized by the underlying physical method that is used. Methods based on
electromagnetic waves include active and passive triangulation (such as stereo,
structure from motion, sheet-of-light, and structured light), phase shift and signal
runtime measurements, depth from (de)focus, depth from shading, photometric
stereo, and others.

Beside electromagnetic waves, acoustic signals can be used to obtain mea-
surements of a scene. Bats use ultrasound principle to navigate in dark caves as
well as to locate prey.? Sound waves are used in the form of active and passive
sonars by ships and submarines to measure the ground and to locate floating
objects. Medical ultrasound allows imaging and measuring of the inside of
organic bodies.

Because of that large variety of different methods, the data of the correspond-
ing sensors have a large variety of different characteristics which in turn lead to
different algorithmic challenges. Such challenges include in particular

* Noise that disturbs the measured points, with levels that range from very
low volume to noise ratios (structured light, sheet-of-light with micrometer
accuracy) to very high ratios (time-of-light sensors with noise of up to 1 cm).

* Veil points, where at depth discontinuities, points between the two depth
levels are returned that are not actually part of the scene.

* Noise points, which are random points within the measurement volume
that are not actually part of the scene.

* Missing data, where parts of the scene are not reconstructed. For example,
stereo sensors might leave out areas without texture; also, time-of-flight
sensors often fail to reconstruct objects with certain surface materials.

2The echolocation capabilities of bats are amazing. Some bats can detect wires as thin as 0.3 mm from a
distance of 2 m. Their prey includes up to 1200 fruit flies per day, which are around 3 mm long. Bats combine
constant frequency and modulated frequency methods, using the Doppler effect, runtime differences as low
as 0.1 ms between both ears, and likely the inference of the returned sound waves to obtain distances and
relative movements of their surroundings. Additionally, they use the loudness of the returned waves to gain
information about the surface characteristics and the material. Since the runtime of sound is temperature
dependent, the bat’s echolocation incorporates the ambient temperature. Prey is additionally identified by
its flap frequency, which is obtained by analyzing the frequency shift due to the Doppler effect at the preys
wings. An evolutionary countermeasure includes moths that stop flapping when detecting corresponding
ultrasound pulses. [142]




CHAPTER 1: INTRODUCTION

* Low resolution: While some sensors can have resolutions in the range of
megapixels, others (such as certain time-of-flight sensors) return only some
hundred to thousand points, leading to more sparse reconstructions.

* Representation: Many methods reconstruct only points that are visible
from a particular single viewpoint, such as the camera or sensor center. For
such sensors, the 3D data can be represented in the form of range, depth or
XYZ images. Such a representation has the advantage that quite often, the
neighborhood structure of the pixels can be exploited as neighboring pixels
in the image often represent points that are neighboring in 3D. However,
other methods reconstruct data from multiple viewpoints and return a 3D
point cloud for which no image-based representation exists.

* Multimodal data: Some sensors return additional data such as intensity or
RGB images in varying quality, which algorithms can exploit.

In order to maximize the range of possible applications and thus their eco-
nomic impact, algorithms that process 3D data should work with data from as
many different sources as possible. In particular, such methods should be as
robust as possible against noise, clutter, missing data, should work with sparse
data and operate on 3D point clouds instead of range or depth images.

1.2 Objectives

The overall objective of this work was to develop methods that allow solving a
wide variety of industrial and robotic applications in 3D. Such solutions require
different algorithmic building blocks, each of which should fulfill several require-
ments in order to be applicable in as many scenarios as possible and to thus
maximize their economic impact.

In a nutshell, the aim of this work was to develop 3D object detection algo-
rithms and 3D surface comparison methods that are generic, fast, robust, accurate,
and easy to use.

Application Scenarios Many industrial applications fall into one of two categories
inspection and manipulation [132, 9]. Here, inspection denotes measurements
performed in the acquired data that are a basis for subsequent decisions. Such
measurements allow, for example, detecting defective parts or adjusting process
parameters using feedback control systems. Inspection of an object often requires
that the object is localized?® in the scene. In other words, its presence and exact
position in the scene must be determined. After alignment, comparisons to a
reference model or other measurements that are defined in model coordinates

3Localization is also sometimes called object detection, object registration, object recognition, or position
detection, terms this work will use interchangeably.

6



1.2 OBJECTIVES

can be performed to check if the part fulfills required tolerances or has required
characteristics.

Manipulation is any physical handling of an object, such as picking it up with
a robot, cutting it, drilling into it, or assembling two or more parts. One very
typical application is bin picking, where many instances of an object are arranged
in a heap and a robot must pick up one that lies on top. As for inspection, a
tirst step for many manipulation tasks is the localization of the target object, as
it allows to transfer locations defined in model coordinates (such as gripping
points) into scene coordinates. Note that inspection and manipulation can be
combined, for example, to remove a part after it was deemed defective.

Required Algorithms Both inspection and manipulation thus often require a
localization of the target object in the scene. Even though this step can be avoided
by using a physical setup that puts objects repeatedly at the exact same position,
this is often not feasible or more expensive than doing the alignment in software.
One of the most important algorithms required for industrial 3D machine vision
is thus a 3D object detector that establishes if a particular object is present in the
scene and, if present, accurately localizes all instances of the object. Consequently,
the main objective of this work was to create such a detector. As outlined in
more detail in Sec. 5, while such methods exist in the literature, they are not as
generic, robust and efficient as required by industrial applications. Sec. 5 through
Sec. 8 will develop a novel object detection framework and apply it to objects,
data sources, and transformations of different kind.

The object detector developed later obtains the object’s position only up to a
certain degree of accuracy because of several approximations used throughout
the method. In order to further improve that approximate position, a robust local
refinement method is required, which is described in Sec. 4.

Another important algorithmic building block, required to perform point-to-
point surface comparisons and to efficiently perform the 3D pose refinement
mentioned above, is a fast 3D nearest neighbor lookup method that, given a
3D query point and a 3D data point cloud, quickly determines the data point
that is closest to the query point. We will see that while such methods already
exists, they are not as efficient as possible and their runtime often depends on
the distribution of the data and query points. Sec. 3 will develop a 3D nearest
neighbor lookup method that overcomes these drawbacks.

Algorithm Requirements As briefly mentioned above, the methods employed
in machine vision applications should fulfill certain requirements in order to
maximize their range of possible applications, the main requirements being that
the methods are generic, fast enough, robust, accurate, and easy to use.
Industrial objects come in many shapes. Generality requires the methods to
work with as many different kinds of objects as possible. The methods should

7



CHAPTER 1: INTRODUCTION

especially not be limited to special classes such as primitive shapes. As mentioned
above, generality also means that the method must work with a large range
of different acquisition methods that exhibit different characteristics in terms
of noise, accuracy, missing data, density, and data representation. Generality
essentially makes the difference between a hand-written algorithm for a particular
task and a generic method that can be part of a wide variety of setups.

As part of the generality, the method must be easy to use. This requirement
translates to the condition that it must not have too many parameters that the
user has to set. If parameters are necessary, they should either be computed
automatically or be reasonably intuitive. Also, the amount of required manual
preprocessing should be minimal.

For practical applications, the overall pipeline from scene acquisition to the
final pose must be reasonably fast. While the exact cycle times vary between
industries and products, one must consider that those times apply to the whole
cycle of acquisition, image processing and actuation. The faster the individual
steps are, the more applications can be covered.

Robustness is a general term that represents the expectation that the key
properties of the methods — such as speed, accuracy and detection rate — must not
change drastically with small variations of the input, such as noise, unexpected
data or unexpected deformations of the object.

Finally, the method must be accurate enough to allow the user to finish the task
at hand. Similar to the condition of being as fast as possible, different applications
have different requirements regarding accuracy: while picking up an object with
a vacuum actuator might not require a very high accuracy, comparing surfaces
require poses that are at least as accurate as the surface variation that shall be
detected. In general, one expects the method to at least not be less accurate than
the input data provided by the sensor.

1.3 Publications

Parts of this thesis contain material previously published in the following publi-
cations. To date, the first publication was cited over 180 times.

e BERTRAM DRrROsT, MARKUS ULRICH, NASSIR NAVAB, AND SLOBODAN ILIC,
Model globally, match locally: Efficient and robust 3D object recognition, in The
Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, IEEE Computer
Society, 2010, pp. 998-1005

* BERTRAM DROST AND SLOBODAN ILIc, 3D Object Detection and Localization
Using Multimodal Point Pair Features, in 2012 Second International Conference
on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich,
Switzerland, October 13-15, 2012, IEEE Computer Society, 2012, pp. 9-16




1.3 PUBLICATIONS

* BERTRAM DROST AND SLOBODAN Ir1c, A Hierarchical Voxel Hash for Fast
3D Nearest Neighbor Lookup, in Pattern Recognition - 35th German Confer-
ence, GCPR 2013, Saarbriicken, Germany, September 3-6, 2013. Proceedings,
Joachim Weickert, Matthias Hein, and Bernt Schiele, eds., vol. 8142 of Lecture
Notes in Computer Science, Springer, 2013, pp. 302-312

* BERTRAM DROST AND SLOBODAN ILic, Graph-Based Deformable 3D Object
Matching, in Pattern Recognition - 37th German Conference, GCPR 2015,
Aachen, Germany, October 7-10, 2015, Proceedings, Juergen Gall, Peter V.
Gehler, and Bastian Leibe, eds., vol. 9358 of Lecture Notes in Computer
Science, Springer, 2015, pp. 222-233

* BERTRAM DROST AND SLOBODAN ILIC, Local Hough Transform for 3D Primitive
Detection, in 2015 International Conference on 3D Vision, 3DV 2015, Lyon,
France, October 19-22, 2015, Michael S. Brown, Jana Koseckd, and Christian
Theobalt, eds., IEEE, 2015, pp. 398-406

Parts of this thesis contain material previously published in the following patents.

* BErTRAM HEINRICH DROST AND MARKUS ULRICH, Recognition And Pose
Determination Of 3d Objects In 3d Scenes Using Geometric Point Pair Descriptors
And The Generalized Hough Transform, 2010. EP 2385483

* BERTRAM DROST AND MARKUS ULRICH, Recognition and pose determination of
3D objects in multimodal scenes, 2012. EP 2720171




CHAPTER 1: INTRODUCTION

10



Notations and Fundamentals

This chapter introduces some of the basic concepts, nomenclature and notations
used in this work. Readers familiar with Euclidean geometry in 3D, the rotation
group SO(3) and its parametrizations may wish to skip this chapter and refer to
Fig. 2.1 for a brief summary of the notations.

2.1 3D Rotations

One practical issue that frequently arises when dealing with 3D transformations
is the parametrization of 3D rotations. The properties of the group of 3D rotations
is significantly more complex than in 2D, where a single angle is enough to
describe each rotation. Different algorithms have different requirements, espe-
cially regarding computational costs, numerical robustness, uniqueness of the
parametrization, and singularities in the parametrization.

Euler has shown in 1776 that the group of rotations in three-dimensional
Eucledian space is a three-dimensional manifold [137]. As such, parametrizing 3D
rotations requires at least three parameters.! However, as shown by Stuelpnagel
in 1964 [137], every parametrization that uses a minimal set of exactly three
parameters has at least one singular point within the rotation group. This is of
disadvantage when computing derivatives w.r.t. the rotation parameters inside
optimization methods. Hopf [70] showed that there are different compromises
when choosing the number of parameters used to represent a 3D rotation. He
showed that at least five parameters are necessary to represent the rotation group
in a 1-1 global manner.

In this work, we generally use rotation matrices to represent rotations, as they
have no singularity and represent rotations in a 1-1 manner. For optimizations, we
parametrize an updating rotation using the Rodruiges parametrization, since it
has exactly three parameters (thus avoiding overparametrization) and is smooth

1As in “three independent parameters”. One might use using space-filling curves or similar techniques
to compress three parameters into a single number.

11



CHAPTER 2: NOTATIONS AND FUNDAMENTALS

Table 2.1: Notation used throughout this work.

]Rf’l
SO(3)

SE(3)

Ay, Ay, Az

Spaces

Set of real numbers

Vector space of real numbers with dimension n

Set of all integers

Special orthogonal group of dimension 3 that contains all
3D rotations

Special euclidean group of dimension 3 that contains all
rigid 3D transformations

Vectors

Column vector

Transposed vector

Normal vector of point x € R3

First, second, and third component of a three-dimensional
vector a € R3

Operators

Euclidean scalar product, alb

cross product

Angle between a and b (see Sec. 2.2.2)

Signed angle between a and b w.r.t. d (see Sec. 2.2.3)
Rotation angle of a rotation matrix R € SO(3)

3D rotation around axis d with an angle of «
Diameter of a point cloud M C R3,

diam(M) = max{|x —y| : x,y € M}

12



2.1 3D ROTATIONS

Table 2.2: Overview over some common ways to parametrize the rotation group SO(3),
their properties and the ease of use for certain problems. Parameters is the number of
real-valued parameters. Continuous states if the parameters are continuous for small
variations of the rotation. A gimbal lock is a situation where one degree of freedom is lost
locally. The ambiguity states how many parametrizations exists for a particular rotation.
Note that all parametrizations can be made unique by restricting the range of allowed
parameters, at the loss of continuity. Interpolate states if there is a straightforward way
to interpolate or to average over two or more rotations. Compose, invert and apply
(i.e., rotate a vector) state if the corresponding operations are easily performed. Finally,
for some parametrizations there exists a metric which is easy to compute based on the

parameters.
O]
£ 8
n 2 % (;38"
[}
5 8 8 & o€ o
-~ -
¢ 2 3% 5 2|g 8 o
g 2 2 7 & & & % 2 A
S 5 Eg E|g E t Bz
~ 00O < O|& U &« =
Axis+Angle (4 - + o - | - - 4+ + -
Rodriguez | 3 + o + | - - + -
Euler-Angles | 3 + - oo + | - - -
Quaternions | 4 + + 2 - + + 4+ + o+
Rotation Matrix | 9 + + 1 - |+ + + + +

around the identity rotation, which is the domain where small updates are
typically located.

2.1.1 Parametrizations

Axis and Angle As shown by Euler in 1775 [51], every 3D rotation can be rep-
resented by a (normalized) rotation axis a € R>, |a] = 1 and a rotation angle
¢.> While this parametrization is rather unhandy for many operations, it has
a well-defined physical interpretation. As such, it is good for visualizing or
defining a rotation.

The so-called Rodruiges” rotation formula is used to rotate an arbitrary vector
v e R%:

R(a,¢)v =vcos(¢p) + (a x v)sin(¢) +a(a-v)(1—cos(¢)) (2.1)

’Different geometric arguments lead to this theorem, and one consequence is the fact that when rotating
a ball, there will always be at least two fixed points which oppose each other on the ball’s surface. Perhaps
unsurprising, the conjecture is called the Satz vom Fufball (soccer ball theorem) in german: When placing
the soccer ball in the center of the field at the beginning of each half time, at least two points on the ball’s
surface will be at the same position.

13



CHAPTER 2: NOTATIONS AND FUNDAMENTALS

where R(a, ¢) is the rotation around the normalized axis a with angle ¢.

If several vectors are to be rotated with the same axis and angle, it might be
faster to precompute the corresponding rotation matrix. Using the convenient
shortcuts ¢ = cos(¢) and s = sin(¢), the matrix reads

c+ai(l—c) aca,(l—c)—as;s aya(l—c)+ays
R(a,¢) = | ajax(l1—c)+a;s  c+ag(l—c) aya(l—c)—as (2.2)
azay(1—c)—ays azay(l—c)+ays c+a2(l—oc)

One exceptional case in the axis-angle-parametrization is the identity, for
which the rotation angle is zero and the axis is an arbitrary unit vector. Because of
this, the parametrization of the axis becomes unstable around the identity rotation:
rotations that are (in SO(3)) arbitrarily close to identity, such as a; = (1,0,0)7,
$1 =€ and ap = (0,1,0), po = €, have very different axes. The parametrization of
the axis is thus not continuous around the identity, leading to problems when,
for example, computing partial derivatives.

Rodruiges Parametrization To avoid this problem of continuity, the Rodrigues
parametrization of a 3D rotation uses the product of the angle ¢ and the rotation
axis a

¢pa (2.3)

to describe a 3D rotation [112]. Since the length of the vector approaches zero if
the rotation approaches identity, this parametrization is continuous even around
the identity rotation.

A distinctive advantage of the Rodrigues parametrization is that it is not
overparameterized and has no singularity around the identity. This makes it
suitable for parametrizing an update rotation for optimization processes. We thus
use the Rodrigues parametrization for the optimizations in Sec. 4.

A variant of the Rodruiges parametrization are the Gibbs parameters [56],
defined as

tan (¢/2) a (2.4)

The Gibbs parameters are unique in the sense that each set of parameters in
R3 represents a different rotation. Also, there is a simple formula to compose
rotations in Gibbs form. However, the Gibbs form has the disadvantage that
rotations around 7t cannot be represented, since tan(7r/2) is undefined.

Rotation Matrix As each 3D rotations is a linear operation on R3, it can be
represented as 3 X 3 matrix R, the rotation matrix. Its columns (or rows, if
multiplied from the right) can be interpreted as the images of the unit vectors

14



2.1 3D ROTATIONS

under the rotation. Rotation matrices are orthogonal (RTR = I) and have a
determinant of 1.

The rotation axis is an Eigenvector for the Eigenvalue 1 of the rotation matrix,
while the rotation angle can be computed using acos and the trace ¢r of the matrix

tr(R) =1+ 2cos(¢) (2.5)

Due to numerical issues with acos, it is more robust to rely on the atan2 function,
using the identity

R3p —Rp3
2sin(¢) = |Ri3 — R 1, (2.6)
Rip —Rp;
to compute the angle as
Ri1 Rip Rygj R3»> —Rp3
AR =X RZ,l R2,2 R2/3 = atan2 R1,3 — R3’1 ’ tT’(R) —1 (27)
R31 Rzp Rz3 Rip — Ry,

Note that some implementations reverse the order of arguments of atan2. Both
formulas can be derived from (2.2). The arguments of atan2 reduce to 2 sin(¢)
and 2 cos(¢), respectively.

Composing two rotations is the matrix-matrix product of the two rotations,
rotating a vector is done by multiplying the vector with the matrix. Inverting the
rotation is performed by transposing the matrix, as it is orthogonal.

Quaternions While the rotation matrix is very generic and allows many op-
erations to be performed with acceptable performance, its 9 parameters are
significantly more than the theoretically required 3 parameters. As a good com-
promise between usability, performance and storage costs, unit quaternions are
often used for representing rotations. Using Quaternions require less compu-
tations for most operations, while the downsides — such as have two possible
representations for each rotation — are typically manageable.

2.1.2 Comparing 3D Rotations

Different metrics were proposed in the literature for comparing 3D rotations,
many of which are essentially equivalent but have different computational
costs [71]. When necessary in this work, we compare two 3D rotations Ry, Ry €
SO(3) using the angle required to rotate one onto the other:

d(Ry,Ry) = £(R;'Ry) (2.8)

15



CHAPTER 2: NOTATIONS AND FUNDAMENTALS

This distance is the maximal angle between the two rotated variants of a vector v,

d(Rq,Ry) = max £(Ry1v, Ryv) (2.9)

vERS

The metric thus has a physical interpretation and is — contrary to many other pro-
posed metrics — independent from the particular representation of the rotations.

2.1.3 Finding a Rotation

We will later require a method that, given two vectors x and y of equal length,
returns a rotation R such that Rx = y. In particular, we are interested in a rotation
with an angle of 7, such that R~1 = R. The problem is thus reduced to finding
the corresponding rotation axis a. Formally, we need our axis a to fulfill

R(a,m)x =y (2.10)
If x +y # 0, this condition is met by
a=(x+y)/|x+y] (2.11)

This is obvious from geometric intuition, or by substituting the corresponding
values in the Rodruiges’ formula (2.1)

=1 =0 =2
N ~ —
R(a, 71)x = Cos 7t x +sin7r(a x x) + (1 — cos ) a(a - x)

= —x+2a(a-x)

§§;F@+yxu+y»m
2

= O Ty 1y g XY xexExy)

:_X+

Since x and y must have equal length, |x| = |y| < x-x =y -y, and we obtain

x+m(x+y)(xx+xy)

= —x+ (x+y)
=Yy

However, for the case that x+y ~ 0 & x = —y, (x+y)/|x + y| becomes

numerically unstable to compute. For x +y = 0, an arbitrary unit vector that is

orthogonal to both x and y is a valid rotation vector. In fact, any a that fulfills the
following conditions also fulfills (2.10):

x-a=y-a < (x—y)-a=0 (2.12)
laj=1 < a-a=1 (2.13)
alx+y|l=x+y (2.14)

16



2.1 3D ROTATIONS

Condition (2.12) states that the angle between the axis and the two vectors are
identical, while condition (2.14) states that 2 must be parallel to x + y, if the latter
is non-zero.

To show that any a that fulfills (2.12-2.14) also fulfills (2.10), let’s first consider
the case that [x+y| # 0 < x+y # 0. In this case, a = (x+y)/|x+y|, and
above’s proof applies. In case that

x+y|l=0<x=—y, (2.15)
we obtain
2.12) (2.15
ar-y=a-x=a-—x=2a-x)=0
= 2a(a-x) =0
and thus
=—1 i =2
. —
R(a, T)x = Cos 7T X +sin rt(axx)+ (1 —cosrm)a(a-x)
= —x+2a(a-x)

In the general case, we thus look for a normalized axis a that fulfills both (2.12)
and (2.14). This can be modeled as linear system

X+l

x+yl a—| *TY (2.17)
x+y]|

X—y 0
Note that for x +y # 0, the solution to this system is already normalized, since

X +ylar = x1 +y1
X +ylaz = x2 +y2
X +ylas =x3 +y3

(x1 +y1)> + (2 +y2)* + (xs +y3)* _
x+yl?

= a?+aj+aj= 1 (2.18)

Pragmatic Approach In some practical setups, where speed is crucial, building
and solving (2.17) might be too expensive. A more pragmatic approach is to use
(2.11) when the angle between x and y does not exceed a certain threshold €, such
as € = 0.1°. In all other cases, the method described in Sec. 2.2.1 is used to find a
vector orthogonal to x, and that vector is used as rotation axis.

17



CHAPTER 2: NOTATIONS AND FUNDAMENTALS

2.2 Basic Operations in 3D

This sections describes the implementation of several basic operations on 3D
vectors and transformations. They all are of little theoretical interest, but require
some careful engineering to avoid common pitfalls.

2.2.1 Finding an Orthogonal Vector

The Challenge When dealing with 3D data, one often needs to define a local
coordinate system given only a point and its normal vector. Such systems are
necessary, for example, to compute certain local surface features around a point.
The problem of defining a local coordinate frame is equivalent to finding a vector
that is orthogonal to the normal vector, since the third axis is simply the cross
product of the normal vector and the orthogonal vector.

Of course, such a system is not uniquely defined, since it can be rotated around
the normal vector. Another requirement might thus be robustness regarding
the direction of the normal vector: When varying the normal only a little, one
would like the local system to also change only little. Unfortunately, the hairy
ball theorem shows that it is not possible to find such an orthogonal vector in a
continuous way.® Instead, for each mapping from normal vectors to an orthogonal
vector, there is at least one direction of the normal vector where the orthogonal
vector flips in some non-continuous way.

For some methods, a unique direction is extracted from the surrounding
3D data. For example, given a point on a 3D surface, a PCA analysis of the
surrounding points can be used to extract a local coordinate frame. However,
such surrounding 3D data is not always available in our use-cases.

Our Approach In practice, given a normal vector n, two of the three unit axis
vectors are projected onto the plane orthogonal to n. The longest projection is
normalized and used as orthogonal vector. This approach avoids problems when
n is collinear to one of the two unit vectors. Fig. 2.1 illustrates the resulting
directions.

3The hairy ball theorem states that given a 3D ball with hairs, it is not possible to comb that ball without
introducing a twirl. Each point on the 3D ball can be interpreted as normalized 3D vector, and the direction
of the 'hair” attached to that point, which is orthogonal to the vector, defines a local coordinate frame. See,
for example, [69].

18



2.2 Basic OPERATIONS IN 3D

Figure 2.1: Illustration of orthogonal directions, computed using the method described
in Sec. 2.2.1. The directions are color coded, using the shown axes. The discontinuous
areas are clearly visible, their fuzziness is an artifact of the visualization.

Input: Normalized direction n

// Project ey, ey onto plane defined by n
p1¢ e —(n-e)n
P2 e —(n-ex)n

// Use larger projection as orthogonal direction , normalize

if [p1] > [p2
o < p1/|p1l
else

0 < pa/|p2l

Output: Vector o, orthogonal to n

2.2.2 Finding the Unsigned Angle between Vectors

acos method Another common problem is to compute the angle £(a, b) between
two vectors a,b € R3. A straightforward and common approach is to use the
identity of the euclidean dot product,

a-b = |a||b|cos(£L(a,b)) (2.19)
to compute the angle as
b
£(a,b) = cos™! <a_) . (2.20)
b allb]

However, this equation requires special handling of the case that either of a or b
is zero, and becomes numerically unstable for |a||b| — 0. Also, due to numerical

19



CHAPTER 2: NOTATIONS AND FUNDAMENTALS

120 T
100
80
60
40
20

T T T T
Time per 1.000.000 angles M |

Time [s]

> <,
() (S
%

Figure 2.2: Speed comparison of different methods for computing the angle between two
3D vectors. The first three methods show timings for the angle between non-normalized
vectors. Methods ending with norm assume that the two vectors are normalized.

errors, (a-b)/(|a||b|) sometimes happens to be slightly larger than 1 or smaller
than —1, such that cos™! fails with an error or returns a non-normalized floating
point number [121].

atan2 method It is instead of numerical advantage to use the cross product
identity

la X b| = |a||b|sin(£(a, b)) (2.21)
along with the atan2-function to obtain
£(a,b) = atan2(a- b, |a x b|) (2.22)

Note that even though atan2 returns an angle in [0,27[,  (2.22) returns a range
of [0, 7t] since |a X b| is non-negative. This is in accordance with the fact that in
a 3D space, one cannot define the angle between two vectors such that the full
range [0,27[ is used without either making £ non-commutative or non-rotation-
invariant.

While (2.22) is computationally more expensive than (2.20), it is robust for
all arguments, numerically more stable and up to 8 orders of magnitude more
accurate [121].

Lookup method While having a high accuracy, both of the presented methods
have the disadvantage of using floating point operations (cos~!, atan2), which
can be rather expensive to compute. In some situations — especially in the object

4Note that the while the range always has length 27, its start and end point are implementation and
language specific — some systems return the angle in [—7, 77[. Note also that for some implementations and
languages, the arguments of atan2 are reversed. Finally, note that some implementations raise an error in
case of atanZ(0,0) ; however, our implementation was done in C, where atanZ(O, 0) =0.

20



2.2 Basic OPERATIONS IN 3D

09 F— T T T T T P
0.6
0.3

T
1

cos(x)
o
/

-0.3 /| :
-0.6
-0.9 | I S~ // | | |

T
1

angle

Figure 2.3: Illustration of the accuracy of a lookup table for cos~!. A regular sampling
of [—1,1] (here in steps of s = 0.2) leads to an irregular sampling of the angular space.
Accuracy is worst at the angles k7r, where the derivative of cos is close to zero.

detection scheme presented in Sec. 5 —, if the required accuracy is small and both
vectors are normalized, a lookup table can be faster than above’s method.
For normalized vectors, we use a lookup table based on

d=a-b =|a||b|cos(£(a,b)) = cos(£(a,b)) (2.23)

The accuracy is mostly problematic around £(a,b) = k7, where the derivative of
cos is close to zero. Fig. 2.3 illustrates this and shows that the worst accuracy can
be expected around the zero angle. When sampling the interval [—1, 1] in steps
of s, the accuracy can be estimated as

acc ~ cos (1 —s) (2.24)

For a target accuracy of acc = J, we can thus estimate the required sampling step
size as

s <1—cos(d) (2.25)

Fig. 2.3 shows the required step size and number of steps for several target
accuracy. Lookup tables beyond an accuracy of around 1° are questionable, since
a large number of steps leads to a worsened cache behavior.

Lookup tables provide an elegant way of avoiding the problem that even for
normalized vectors, |a - b| might be slightly larger than one. By adding additional
bins beyond the theoretical range [—1,1], those cases can be caught without
additional costs in terms of range checks.

Integrated Lookup Table Note that the use of a lookup table requires a cast from
a floating point number to an integer. For some systems, such an operation can
be quite time consuming. However, in our usage scenarios, we need to convert
the resulting angle into an integer anyway, since we sample the resulting angles

21



CHAPTER 2: NOTATIONS AND FUNDAMENTALS

Table 2.3: Required sampling step size and number of steps for the cos™! lookup table,
given some target accuracy J.

Target Accuracy ¢ in ° 15 10 5 2 1 0.1
Sampling size s 0.034 0.015 0.0038 0.00061 0.00015 1.5e-006
Number of steps [2/s] 59 132 526 3284 13132 1313123

with uniform intervals (compare Sec. 5, (5.21) and (5.7)). This conversion can be
integrated into the lookup table, such that no additional conversion from float to
integers is required.

Taylor expansion A final approximate approach we evaluated is to use the taylor
expansion of acos to speed up the potentially expensive computation of acos

acos(x) & 5 —x = = T = 20— 2 4 Ox!) (2.26)

However, we found that even when using the evaluation up to order x?, the error
made in the evaluation was up to 15°. When using more terms, the expansion
becomes more expensive to compute than when using one of the exact methods.
The taylor expansion is therefore either less accurate than the Lookup-Table
method, or slower than the exact methods, such that there is no benefit to it.

Evaluation Both the acos and the LUT method require a division if the two
vectors are non-normalized. In both cases, if the vectors are known to have length
1, the divisions and length computations can be omitted, leading to additional
speedup. Fig. 2.2 shows timings for the different proposed methods.

2.2.3 Finding the Signed Angle between Vectors

A slightly different problem is to compute the signed angle £;(a,b) between a
and b, given an arbitrary axis d, |d| = 1. It is defined such that

Rd(éd(a,b))a =b (2.27)

meaning that if we rotate around d with an angle of £, a is mapped onto b. £
has, contrary to £(a,b), the full range [0,27[. Note that £;(a,b) is defined if
and only if

a-d=b-d (2.28)

which is easily shown by multiplying (2.1) with d. The following method assumes
that the problem is well-formed.

22



2.2 Basic OPERATIONS IN 3D

To compute £;(a,b), we first simplify the problem and assume that d is
orthogonal to both a and b. In this case, we can use a X b to compare the
orientation of a and b to d, using

s=sgn((axb)-d) (2.29)
Then,
] 4(a,b) s>0
4alab) = { 2t — 4£(a,b) s<0 (2.30)

The case that d is not orthogonal to a and b can be reduced to above’s case by
projecting a and b onto the plane defined by d:

£L4(a,b) = Ly(a—d(a-d),b—d(b-d)). (2.31)

2.24 Comparing Rigid Transformations

When clustering rigid transformations or when comparing a recovered rigid
transformation with a ground truth transformation, one might need some mea-
sure to compare two such transformations. Defining a single-valued metric is not
trivial, since it requires the combination of rotation and translation, which live in
different spaces with different metrics. For example, is a transformation where
translation is off by 1 mm better than a transformation where rotation is off by
1°?

Given two rigid transformations T7, T, € SE(3), we first define the difference
transformation as

D(Ty, T») = T; 'Th = (R, 1) (2.32)

We use D as basis for any metric, since it is independent of rigid motions: given
any motion M € SE(3) that is applied to both T; and T,, we have

D(MT;, MT) = (MTy) }(MT,) = T, "M 'MT, = T; 'T, = D(T;, T»)  (2.33)

Two-valued metrics Several strategies exist for defining comparison metrics,
some of which are domain-dependent. A very simple one is to ignore the
problem of combining translation and rotation and to simply use two measures,
typically |t| for translation and £ (R) for rotation (see Sec. 2.1.2):

ma(Ty, Tz) = (£(R), [t]) (2.34)

If the transformation is to be applied to some object with a fixed, known
size (for example, when localizing a chair for which a CAD model is available),

23



CHAPTER 2: NOTATIONS AND FUNDAMENTALS

the size of the object can be used to normalize the translational part of m,. The
normalized metric is

_ |t
M2 norm = <K(R)/ m) . (235)

This allows to define absolute, object-independent thresholds when comparing
a rigid transformation with some ground truth transformation. For example,
one can define a recovered transformation to be correct if 7 norm < (10°,0.1),
meaning that the translation may not be off by more than 10% of the object’s
diameter, and the rotation not more than 10°.

Single-valued metrics If again a model M of the transformed object is available,
one can define a single-valued metric for comparing two transformations. For
this, we apply both transformations onto M and measure by how much the points
differ after the transformation. Formally, we define

my = max{|Tix — Tox| : x € M}
= max{|x — Dx| : x € M}. (2.36)
We can again define a normalized variant of this metric as

m ___ ™M
Lnorm = diam (M)

The metric 11 norm has the advantage that it requires only a single threshold for

(2.37)

comparing rigid transformations.

Efficient Computation For large models with many points, m; might be expensive
to compute. However, one can speed up the computation using the observation
that m; needs to be evaluated only for the convex hull C(M) of M: For x € M,
x =Y ,;wic; withe; € C(M), Y0 =1,0 < a; <1, we get

Z:[Xici —D ZOCZ'CI' ZIXZ'CZ' — thl’DCi
1 [ 1 1

<Y ajl¢; — Dej| < max|¢; — Dl (2.38)
n 1
1

|x — Dx| =

= Y ai(c; — Dc;)

i

With the same reasoning, one can compute an approximating upper bound of 1,
by using the 8 corners of a bounding box of M. We call call this approximation
M1,approx, and the corresponding normalized metric 71 4pprox,norm-

2.3 Sampling

Motivation Uniform sampling of 3D point clouds serves two main purposes:
It eliminates bias towards scene parts that are more densely sampled, and it
improves performance by reducing the cloud to only as few points as necessary.

24



2.3 SAMPLING

In scenes captured with a depth sensor that follows a pinhole-based camera
model, such as time-of-flight or most stereo setups, scene parts closer to the
camera center will have more points per unit surface that those further away.
Also, noise, occlusion and other acquisition-specific characteristics can lead to
irregular densities throughout the scene. The proposed detection scheme uses a
voting approach, where scores are computed for pose hypotheses based on the
number of scene points that would lie on the object given the pose candidate. The
voting would thus be sensitive to the non-uniform sampling mentioned before,
introducing a bias to scene parts that are more densely sampled.

Additionally, the proposed detection scheme is able to to find pose candidates
with as few as a 100 points on the target object. Since high-resolution sensors can
easily produce point clouds containing some million points, reducing the number
of points can lead to a just as accurate, but faster detection.

Method A voxel based sampling approach would overlay the scene with a voxel
grid and keep at most a single point per voxel. While fast, this approach has
the disadvantage that it is not rotation invariant and that points in neighboring
voxels might still be close to each other. Instead, we use a greedy sampling approach
that iterates over the points of the original point cloud and adds them to the
sampled point cloud only if there is no other point in the sampled cloud that is
closer to the new point than the given sampling distance. In pseudo code, this
reads

Input: Input point cloud Cj,
Sampling distance dpgx

Cout 2
for each ve(Cy
if mingec,, |0 —w| > dpax
Cout < Cout U {0}

Output: Sampled point cloud Cou

A spatial index is used to speedup the search for the closest point in the
already sampled cloud. Even though this approach is not straightforward to
parallelize, it is invariant to rigid transformations, obeys the distance criterion
strictly, and is easily extendable to take normal directions into account.

25



CHAPTER 2: NOTATIONS AND FUNDAMENTALS

26



Part 11

Nearest Neighbors and Pose
Refinement in 3D

27






Voxel-Hash Based Nearest Neighbor
Search

A recurring problem in 3D applications are 3D nearest neighbor lookups. For
example, most of the runtime of the iterative closest point (ICP) algorithm is
traditionally spent in the nearest neighbor lookup. Another application are
surface comparisons, where the point-to-point distances between two registered
point clouds need to be computed.

In this chapter, a novel method for exact and approximate 3D nearest neighbor
lookups is proposed that allows almost constant-time lookups. Most notably
and contrary to previous approaches, lookup times are nearly independent of
the distribution of data and query points, allowing usage of the method in real-
time scenarios. The lookup times of the proposed method outperform prior art
sometimes by several orders of magnitude. This speedup is bought at the price of
increased costs for creating the indexing structure. However, this can typically be
done in the offline phase. Additionally, an approximate variant of the method is
proposed that significantly reduces the time required for data structure creation.

Parts of this chapter previously appeared in [42].

3.1 Introduction

Quickly finding the closest point from a large set of data points in 3D is crucial
for alignment algorithms, such as ICP, as well as industrial inspection and robotic
navigation tasks. Most state-of-the-art methods for solving the nearest neighbor
problem in 3D are based on recursive subdivisions of the underlying space to
form a tree of volumes. The various subdivision strategies include uniform
subdivisions, such as octrees [90], as well as nonuniform subdivisions, such as
k-d-trees [13] and Delaunay- or Voronoi-based subdivisions [39].

Tree-based methods require two steps to find the exact nearest neighbor. First,
the query point descends the tree to find its corresponding leaf node. Since the

29



CHAPTER 3: VoxEL-HAsH BASED NEAREST NEIGHBOR SEARCH

query point might be closer to the boundary of the node’s volume than to the
data points contained in the leaf node, tree backtracking is required as a second
step to search neighboring volumes for the closest data point. The proposed
method improves the time for finding the leaf node and removes the need for
potentially expensive backtracking by using voxels to recursively subdivide space.
The leaf voxel that contains the query point is found by bisecting the voxel level.
For trees of depth L, this approach requires only O(log(L)) operations, instead
of O(L) operations when letting the query point descend the tree. In addition,
each voxel contains a list of all data points whose Voronoi cells intersect that
voxel, such that no backtracking is necessary. By storing the voxels in a hash table
and enforcing a limit on the number of Voronoi intersections per voxel, the total
query time is independent of the position of the query point and the distribution
of data points. The theoretical query time is of magnitude O(log(log(N)), where
N is the size of the target data point set.

The amount of backtracking that is required in tree-based methods depends
on the position of the query point. Methods based on backtracking therefore
have non-constant query times even when using the same dataset, making them
difficult to use in real-time applications. Since the proposed method does not
require backtracking, the query time becomes almost independent of the position
of the query point. Further, the method is largely parameter free, does not require
an a-priori definition of a maximum query range, and is straightforward and
easy to implement.

We evaluate the proposed method on different synthetic datasets that show
different distributions of the data and query point sets, and compare it to several
state of the art methods: a self-implemented k-d-tree, the Approximate Nearest
neighbor (ANN) library [98] (which, contrary to its name, allows also to search for
exact nearest neighbors), and the Fast Library for Approximate Nearest Neighbors
(FLANN) [99]. The experiments show that the proposed method is significantly
faster for larger data sets and shows an improved asymptotic behavior. As a
trade-off, the proposed method uses a more expensive preprocessing step. We
also evaluate an extension of the method that performs approximate nearest
neighbor lookups, which is faster for both the preprocessing and the lookup
steps. Finally, we demonstrate the performance of the proposed method within
two applications on real-world datasets, pose refinement and surface inspection.
The runtime of both applications is dominated by the nearest neighbor lookups,
which is why both greatly benefit from the proposed method.

3.2 Related Work

An extensive overview over different nearest neighbor search strategies can be
found in [120]. Nearest-neighbor search strategies can roughly be divided into

30



3.3 METHOD

tree-based and hash-based approaches. Concerning tree-based methods, variants
of the k-d-tree [13] are state-of-the-art for applications such as ICP, navigation
and surface inspection [50]. For high-dimensional datasets, such as images or
image descriptors, embeddings into lower-dimensional spaces are sometimes
used to reduce the complexity of the problem [72].

Many methods were proposed for improving the nearest neighbor query time
by allowing small errors in the computed closest point, i.e., by solving the approx-
imate nearest neighbor problem [4, 61, 30]. While faster, using approximations
changes the nature of the lookup and is only applicable for methods such as ICP,
where a small number of incorrect correspondences can be dealt with statistically.
The iterative nature of ICP can be used to accelerate subsequent nearest neighbor
lookups through caching [103, 60]. Such approaches are, however, only usable
for ICP and not for defect detection or other tasks.

Yan and Bowyer [155] proposed a regular 3D grid of voxels that allow constant-
time lookup for a closest point, by storing a single closest point per voxel. How-
ever, such fixed-size voxel grids use excessive amounts of memory and require a
tradeoff between memory consumption and lookup speed. The proposed multi-
level adaptive voxel grid overcomes this problem, since more and smaller voxels
are created only at the interesting parts of the data point cloud, while the speed
advantage of hashing is mostly preserved. Glassner [57, 34] proposed to use a
hash-table for accessing octrees, which is the basis for the proposed approach.

Using Voronoi cells is a natural way to approach the nearest neighbor problem,
since a query point is always contained in the Voronoi cell of its nearest neighbor.
Boada et al. [20] proposed an octree that approximates generalized Voronoi cells
and that can be used to approximately solve the nearest neighbor problem [19].
Their work also gives insight into the construction costs of such an octree. Con-
trary to the proposed algorithm, their work concentrates on the construction of
the data structure and solves the nearest neighbor problem only approximately.
Additionally, their proposed octree still requires O(depth) operations for a query.
However, their work indicates how the proposed method can be generalized to
other metrics and to shapes other than points. Similar, Har-Peled [63] proposed
an octree-like approximation of the Voronoi tesselation. Birn et al. [18] proposed
a full hierarchy of Delaunay triangulations for 2D nearest neighbor lookups.
However, the authors state that their approach is unlikely to work well in 3D and
beyond.

3.3 Method

3.3.1 Notation and Overview

We denote points from the original data set as x € D and points of the query set
q € Q. Given a query point q, the objective is to find a closest point NN(q, D) =

31



CHAPTER 3: VoxEL-HAsH BASED NEAREST NEIGHBOR SEARCH

Table 3.1: Notations used to describe the voxel-based nearest neighbor search.

Notation Description
DCR? Target point cloud
N = |D|  Size of target point cloud
NN(q,D) Nearest neighbor of q € R® in D
ANN(q,D) Approximate nearest neighbor

voro(x) Voronoi cell of x in D: voro(x) = {y € R® : Vxe D :

ly —x| <[y —%[}.
v CR® A voxel in 3D space

I(v) Voxel level
L(D,v) Set of all data points whose Voronoi cell intersects with
voxel v

Minax Maximum list length
Lmax Maximum voxel level

argmin, ., |q — x|2. The individual Voronoi cells of the Voronoi diagram of D are
denoted voro(x), which we see as closed set. Fig. 3.1 summarizes the notations
use throughout this chapter.

Note that the nearest neighbor of q in D is not necessarily unique, since
multiple points in D can have the same distance to q. In the practical applications
of this method, however, we are mostly interested in a single nearest neighbor.
Additionally, considering rounding errors and floating point accuracy, it is highly
unlikely for a measured point to actually have multiple nearest neighbors in
practice. We will therefore talk of the nearest neighbor throughout this chapter,
even though this is technically incorrect.

The proposed method requires a pre-processing step where the voxel hash
structure for the data set D is created. Once this data structure is precomputed,
it remains unchanged and can be used for subsequent queries. The creation of
the data structure is done in three steps: The computation of the Voronoi cells for
the data set D, the creation of the octree and the transformation of the octree into
a hash table.

3.3.2 Octree Creation

Using Voronoi cells is a natural way to approach the nearest neighbor problem. A
query point q is always contained within the Voronoi cell of its closest point, i.e.,
q € voro(NN(q, D)). Thus, finding a Voronoi cell that contains q is equivalent
to finding NN(q, D). However, the irregular and data-dependent structure of the
Voronoi tessellation does not allow a direct lookup. We thus use the octree to
create a more regular structure on top of the Voronoi diagram, which allows to
find the corresponding Voronoi cell quickly.

After computing the Voronoi cells for the data set D, an octree is created,

32



3.3 METHOD

5L

I
REEPEL AR Sl [ b
sy e
t
32
¥
T

it

Figure 3.1: Toy example in 2D of the creation of the hierarchical voxel structure. For the
data point set (left), the Voronoi cells are computed (center). Starting with the root voxel
that encloses all points, voxels are recursively split if the number of intersecting Voronoi
cells exceeds Mmax. In this example, the root voxel is split until each voxel intersects at
most Mmax = 5 Voronoi cells (right).

whose root voxel contains the expected query range. Note that the root voxel
can be several thousand times larger than the extend of the data set without
significant performance implications.

Contrary to traditional octrees, where voxels are split based on the number of
contained data points, we split each voxel based on the number of intersecting
Voronoi cells: Each voxel that intersects more than Mmax Voronoi cells is split into
eight sub-voxels, which are processed recursively. Fig. 3.1 shows a 2D example
of this splitting. The set of data points whose Voronoi cells intersect a voxel v is
denoted

L(D,v) = {x € D : voro(x) Nv # @}. (3.1)

This splitting criterion allows a constant processing time during the query phase:
For any query point q contained in a leaf voxel vje,, the Voronoi cell of the
closest point NN(q, D) must intersect vjo5¢. Therefore, once the leaf node voxel
that contains q is found, at most Mmax data points must be searched for the
closest point. The given splitting criterion thus removes the requirement for
backtracking.

The cost for this is a deeper tree, since a voxel typically intersects more Voronoi
cells than it contains data points. The irregularity of the Voronoi tessellation
and possible degenerated cases, as discussed below, make it difficult to give

33



CHAPTER 3: VoxEL-HAsH BASED NEAREST NEIGHBOR SEARCH

Hash Table Level
1
(1 =9,idx;) 2
) 3
L 4
I =5,idx 5 ~h =5
( ? e 6 1<—I3=6
] 7 <l =
(I = 3,idx3) . 8
L 9

(a) (b)

Figure 3.2: (a) The hash table stores all voxels v, which are indexed through their level |
and their index idx that contains the integer-valued coordinates of the voxel. The hash
table allows to check for the existence of a voxel in constant time. (b) Toy example in 2D
of how to find the leaf voxel by bisecting its level. Finding the leaf node by letting the
query point descend the tree would require O(depth) operations on average (green path).
Instead, the leaf node is found through bisection of its level. In each step, the hash table
is used to check for the presence of the corresponding voxel. The search starts with the
center level /; = 5 and, since the voxel exists, proceeds with I = 7. Since the voxel at
level I, does not exist, level I3 = 6 is checked and the leaf node is found.

theoretical bounds on the depth of the octree. However, experimental validation
shows that the number of created voxels scales linearly with the number of data
points |D| (see Fig. 3.5a).

3.3.3 Hash Table

The result of the recursive subdivision is an octree, as depicted in Fig. 3.1. To
tind the closest point of a given query point q, two steps are required: Find the
leaf voxel vieqa¢(q) that contains q and search all points in L(D, vj,¢(q)) for the
closest point of 4. The computation costs for finding the leaf node are on average
O(depth) ~ O(log(|D|)) when letting q descend the tree in a conventional
way. We propose to use the regularity of the octree to reduce these costs to
O(log(depth)) ~ O(log(log(|D]))). For this, all voxels of the octree are stored in
a hash table that is indexed by the voxel’s level /(v) and the voxel’s integer-valued
coordinates idx(v) € Z (Fig. 3.2a).

The leaf voxel viea¢(q) is then found by bisecting its level. The minimum and
maximum voxel level is initialized as Iy, = 1 and Imax = depth. The existence of
the voxel with the center level I. = | (Imin + Imax) /2] is tested using the hash table.
If the voxel exists, the search proceeds with the interval [I¢, Imax]. Otherwise,
it proceeds to search the interval [ljmin, [c — 1]. The search continues until the
interval contains only one level, which is the level of the leaf voxel v}, ¢(q)-
Fig. 3.2 illustrates this bisection on a toy example.

34



3.3 METHOD

.

Figure 3.3: Example of a degenerated point set (left) where many Voronoi cells meet at
one point (center). In this case, the problem of finding the nearest neighbor is ill-posed
for query points close to the center of the circle. To capture such degenerated cases, voxel
splitting is stopped after Lmax subdivisions (right). See the text for more comments on
why such situations are not of practical interest.

Note that in our experiments, tree depths were in the order of 20-40 such that
the expected speedup over the traditional method was around 5. Additionally,
each voxel in the hash table contains the minimum and maximum depth of its
subtree to speedup the bisection. Additionally, the lists L(D, v) are stored only
for the leaf nodes. The primary cost during the bisection are cache misses when
accessing the hash table. Therefore, an inlined hash table is used to reduce the
average amount of cache misses.

3.3.4 Degenerated Cases

For some degenerated cases, the proposed method for splitting voxels based on
the number of intersecting Voronoi cells might not terminate. This happens when
more than Mmax Voronoi cells meet at a single point, as depicted in Fig. 3.3. To
avoid infinite recursion, a limit Ly« on the depth of the octree is enforced. In
such cases, the query time for points that are within such an unsplit leaf voxel
is larger than for other query points. However, we found that in practice such
cases appear only on synthetic datasets. Also, since the corresponding leaf voxels
are very small (of size 2~ Llmaxtimesthesizeo ftherootvoxel), chances of a random
query point to be within the corresponding voxel are small. Additionally, note
the problem of finding the closest point is ill-posed in situations where many
Voronoi cells meet at a single point and the query point is close to that point:
Small changes in the query point can lead to arbitrary changes of the nearest
neighbor. The degradation in query time can be avoided by limiting the length of
L(D,v) of the corresponding leaf voxels. The maximum error made in this case
is in bound by the diameter of the voxel of level Lnax. For example, Lnax = 30
reduces the error to 2739 times the size of the root voxel, which is already smaller
than the accuracy of single-precision floating point numbers. Summing up, the
proposed method degrades only in artificial situations where the problem itself

35



CHAPTER 3: VoxEL-HAsH BASED NEAREST NEIGHBOR SEARCH

is ill-posed, but the method’s performance guarantee can be restored at the cost
of an arbitrary small error.

3.3.5 Generalizations to Higher Dimensions

The proposed method theoretically can be generalized to dimensions 4 > 3.
However, memory and computational costs would likely render the method
practically unusable in higher dimensions. This is due to several reasons:

e The branching factor 2 of the corresponding hypercube tree leads to ex-
ponentially increasing memory and computation requirements, even for
approximately constant average tree depths. For example, even a moderate
dimension such as d = 16 has a branching factor of 2!¢ = 65536, such that a
tree of depth 3 would already have (2!¢)3 = 24 nodes.

* Voronoi cells in higher dimensions are increasingly difficult to compute.
Dwyer [49] showed that the geometric complexity of the Voronoi cells of n
points in dimension d is at least'

O(nd?) (3.2)

* Due to the curse of dimensionality, the distances between random points in
higher dimensions tend to become more similar [12].2 As one consequence,
the number of Voronoi neighbors of each point increase, up to the point
where almost all points are neighbors of each other. As another consequence,
nearest neighbor lookups for a random query point become ill-conditioned
in the sense that a random query point will have many neighbors with
approximately equal distance. Voxels are therefore likely to have very long
lists of possible nearest neighbors, resulting in deeper voxel trees.

3.3.6 Approximate Methods

Definition Approximate nearest neighbor methods are methods that return only an
approximation of the correct nearest neighbor. Approximate methods often are
significantly faster or require less memory than exact methods. For example, a
simple approximate method is to use a k-d-tree without performing backtracking
(see, for example, [98, 99]).

Given a query point q and a dataset D, we denote ANN(q, D) for an approx-
imate nearest neighbor of q in D. We define the distance to the exact and the

INote that Dwyer showed that for a fixed dimension, the complexity is linear in the number of points.
Refer to equation (3.3) in [49] and the following discussion for the result regarding (3.2).

>The term goes back to Richard E. Bellmann. It captures the fact that even for moderately larger
dimensions, the volume of space increases drastically. This often results in counterintuitive effects if one
keeps only 3D spaces in mind.

36



3.3 METHOD

Figure 3.4: 2D-illustration of the fast, approximate voxel creation. Instead of computing
and intersecting Voronoi cells, each point (black dot) is added to a n x n-neighborhood
(here 3 x 3) of voxels, on each level.

approximate nearest neighbor as

dg = |q —NN(q, D)| (3.3)
dx =|q— ANN(q, D) (3.4)

with d A > dE
Quality Metrics Several quantitative values can be used to describe the quality
of an approximate method. The error probability perr defines the probability for

a random query point to not return the exact, but only an approximate nearest
neighbor:

Perr = P(dA > dE) (3.5)
The absolute error is given as
Eabs = |da — dg| = da — dg (3.6)

Approximate methods are often classified according to the e-criterion, which
states that

da < (1+¢€)dg (3.7)

and thus puts an upper bound on the relative error.
Given some object M with a fixed, known size diam (M), we will also measure
the quality of an approximate nearest neighbor relative to the object’s diameter:

Erel,M = Eabs/ diam(M) = (dA - dE)/ diam(M) (3.8)

The proposed voxel hash method can easily be converted into an approximate
method. We will combine two techniques that work at different steps of the
method: List length limiting and explicit voxel neighborhood.

37



CHAPTER 3: VoxEL-HAsH BASED NEAREST NEIGHBOR SEARCH

List Length Limiting A straightforward way of reducing the complexity of both
the offline and online phase is to limit the list lengths of each voxel. This is
equivalent to storing, for each leaf node, only a subset of the intersecting Voronoi
cells. We denote L for a subset of the correct list:

La(D,v) C L(D,v) (3.9)
Several possibilities exist how La can be selected from L.

* Minimize error probability: Given a voxel v, the probability that an intersecting
Voronoi cell voro(x), x € L(D,v) contains a query point q € v is

vol(voro(x) Nv)
vol(v)

P(q € voro(x) |q € v) = (3.10)

where vol(X) is the volume of a 3D set X.

Therefore, if x is removed from L(D, v), the probability of making an ap-
proximation error when querying for q is P(q € voro(x)|q € v). In order to
minimize the probability of making an error, the points in L(D,v) can be
removed based on the volume vol(voro(x) Nv) of the intersection, removing
cells with smaller intersection volumes first. Since the Voronoi cells are
disjoint, the total probability of an approximation error is the sum of (3.10)
over all removed entries.

If the approximation error probability shall be bounded, one can remove

points from the lists L(D, v) only until said probability is reached.

* Minimize maximum absolute error: The Voronoi cells intersecting a voxel can be
removed such that some predefined maximum absolute error is maintained.
Given some closed, bounded volume V C R3, we define the maximum
distance of a point inside that volume from the volume’s boundary,

maxdist(V) =sup inf |v—w| (3.11)
veV weR3\V

If an entry x € L(D,v) is removed from L(D,v), the maximum absolute
error possible is

maxdist(voro(x) N v) (3.12)
If multiple entries xj, Xy, . .. are removed, the maximum absolute error is
max E,p,s = maxdist (U(Voro(xi) N v)) (3.13)
i

This formula allows to remove points from L(D, v) while keeping a bound
on the maximum absolute error.

38



3.3 METHOD

* Greedy element selection: Both methods above require an explicit computation
of the Voronoi cells and their intersection with voxels. While elegant, such
computations can be expensive.

A different strategy is to keep a fixed number of vertices that are closest
to the center of the voxel. This strategy is faster, since it does not require
explicit computation of the intersection volumes. It is especially efficient in
combination with the next step, which avoids constructing Voronoi cells all
together.

Explicit Voxel Neighborhood As shown in Sec. 3.4, using Voronoi cells as de-
scribed leads to a potentially very time-consuming offline stage. Most of the
runtime is spent in the creation of the Voronoi cells, and the intersection between
Voronoi cells and voxels.

A different approach allows a much faster assignment of points to voxels:
Instead of intersecting Voronoi cells with voxels, a point is added to the list of its
neighboring voxels only. Fig. 3.4 illustrates this: The given point is added to all
voxels in its 3 x 3 (or, in 3D, 3 x 3 x 3) neighborhood.

This technique is combined with the list length limiting by retaining only a
few or even one point that is closest to the voxel’s center. The runtime for creating
the voxel tree this way is linear in the number of points N and has a significantly
smaller constant factor. In particular, no complex creation of Voronoi cells needs
to be performed.

Note that both steps modify only the creation of the data structure; the
lookup phase stays the same. The following algorithm summarizes the proposed
approximate method.

Input: Dataset D
Voxel level range Ilynin and Imax
Maximum list length Mmax

for x in D do:
for I from Ly to Imax do:
v < voxel of level I containing x
for ¢ in 3x3x3 neighborhood of wv:
L(v") « L(v")U{x}

for all voxels v:
Sort L(v) by distance of x€ L(v) to center of v

Truncate L(v) at length Mmax

Output: Set of voxel lists L

Tree Depth For the exact methods, voxels were split based on the number of
intersecting Voronoi cells. This provided a natural way of splitting voxels only

39



CHAPTER 3: VoxEL-HAsH BASED NEAREST NEIGHBOR SEARCH

107 F 5
L l o - - ] 10° [ T T T T3
100 F Muyaxr =30 —— = F .
@ L max = 60 7 102
T>'<’ 105 E max — 0 — : 101
I ] =
- 10* E = QE) 10° e
g1 E - = 10 -
(=] 10 m
§ 102 E - = 1072 i =
z - g @ Vipay =90 —— ]
b E O 10°% oronoi Cells —=— o
100 ¥ = _ KDAE?\? —— 7
BV -
10° C 1 Ll Ll Ll Ll 10 F FLANN ]
102 103 10% 10° 106 10-5 L1 Ll Ll o P Ll

10? 10% 10* 10° 100
Number of Points

Number of Points

Figure 3.5: Construction and memory costs of the proposed data structure for the
CLUSTER dataset. (a) The number of created voxels depends linearly on the size of the
data cloud. As a rule of thumb, one voxel is created per data point. (b) The creation
time of the voxel data structure. The creation of the Voronoi cells is independent of
the value of Mmax and its creation time is plotted separately. Although the creation of
the voxel data structure is significantly slower than for the k-d-tree, the ANN and the
FLANN libraries, the creation times are still reasonable for offline processing. Note that
the constant performance of the proposed method for less than 10° data points is based
on our particular implementation, which is optimized for large data sets and requires
constant time for the creation of several caches. Overall, larger values of Mmax lead to
faster and less memory consuming data structure creation, at the expense of matching
time (see Fig. 3.8).

where necessary. A downside of the proposed approximate method is that this
automatic splitting no longer happens. As consequence, the range of levels must
be specified a priori.

Two use-cases of the proposed method are nearest neighbor lookups for ICP
and for defect detection. For both, the set of data points is regularly sampled
(see Sec. 5) with some distance dgampling- This allows to simply use dsampling asa
lower bound on the voxel size.

Additionally, a post-processing step can be used to remove unnecessary voxels:
If only a single point is stored for each voxel (Mmax = 1), and all existing child
voxels of some voxel v store the same point, then all those child voxels can
be removed without changing the result of the nearest neighbor lookup. This
effectively prunes the voxel tree at uninteresting locations.

3.4 Experiments

Several experiments were conducted to evaluate the performance of the pro-
posed method in different situations and to compare it to the k-d-tree, the ANN

40



3.4 EXPERIMENTS

Figure 3.6: Example application for the proposed method. A 3D scan of the scene was
acquired using a multi-camera stereo setup and approximate poses of the pipe joint were
found using the method of Sec. 5. (a) The poses were refined using ICP of Sec. 4. The
corresponding nearest neighbor lookups were logged and used for the evaluation shown
in Tab. 3.2. (b) For each scene point close to one of the detected objects, the distance to
the object is computed and visualized. This allows the detection of defects on the surface
of the objects. The lookups were again logged and used for the performance evaluation
in Table 3.2.

libary [98] and the FLANN library [99] as state-of-the-art methods. Note that
the FLANN library returns an approximate nearest neighbor, while ANN was
configured such that an exact nearest neighbor was returned. Both the k-d-tree
and the voxel hash structure were implemented in C with similar optimization.
The creation of the voxel data structure was partly parallelized, queries were not.
All times were measured on an Intel Xenon E5-2665 with 2.4 GHz.

3.4.1 Data Structure Creation

Although the creation of the proposed data structure is significantly more expen-
sive than the creation of the k-d-tree, the ANN library and the FLANN library,
these costs are still within reasonable bounds. Fig. 3.5b compares the creation
times for different values of Ma.x. The creation of the Voronoi cells is inde-
pendent of the value of Mmax and thus plotted separately. Fig. 3.5a shows the
number of created voxels. They depend linearly on the number of data points,
while the choice of M.y introduces an additional constant factor. Note that the
constant performance of the proposed method for fewer than 10° data points is
based on our particular implementation, which is optimized for large data sets
and requires constant time for the creation of several caches.

41



CHAPTER 3: VoxEL-HAsH BASED NEAREST NEIGHBOR SEARCH

3.4.2 Synthetic Datasets

We evaluate the performance on different datasets with different characteristics.
Three synthetic datasets were used and are illustrated in Fig. 3.7. For dataset
RANDOM, the points are uniformly distributed in the unit cube [0,1]>. For
CLUSTER, points are distributed using a Gaussian distribution. For SURFACE,
points are taken from a 2D manifold and slightly disturbed. For each data set,
two query sets with 1.000.000 points each were created. For the first set, points
were distributed uniformly within the bounding cube surrounding the data point
set. The corresponding times are shown in the center column of Fig. 3.8. The
second query set has the same distribution as the data set, with the corresponding
timings shown in the right column of Fig. 3.8.

The proposed data structure is significantly faster than the simple k-d-tree
for all datasets with more than 10° points. The ANN library shows similar
performance as the proposed method for Mma.x = 30 for the RANDOM and
CLUSTER datasets. For the SURFACE dataset, our method clearly outperforms
ANN even for smaller point clouds. Note that the SURFACE dataset represents
a 2D manifold and thus shows the behavior for ICP and other surface-based
applications. Overall, compared to the other methods, the performance of the
proposed method is less dependent on the distribution of data and query points.
This advantage allows our method to be used in real-time environments.

3.4.3 Real-World Datasets

Finally, real-world examples were used for evaluating the performance of the
proposed method. Three datasets were collected and evaluated:

ICP Matching: Several instances of an industrial object were detected in a scene
acquired with a multi-camera stereo setup. The original scene and the matches
are shown in Fig. 3.6. We found approximate positions of the target object using
the method of Sec. 5 and subsequently used ICP of Sec. 4 for each match for a
precise alignment. The nearest neighbor lookups during ICP were logged and
later evaluated with the available methods.

Comparison: We used the proposed method to find surface defects of the
objects detected in the previous dataset. For this, the distances of the scene
points to the closest found model were computed. The distances are visualized
in Fig. 3.6b and show a systematic error in the modeling of the object.

ICP Room: Finally, we used a Kinect sensor to acquire two slightly rotated
scans of an office room and aligned both scans using ICP.

The sizes of the corresponding data clouds and the lookup times are shown in
Table 3.2. For all three datasets, the proposed method significantly outperforms
both our k-d-tree implementation and the ANN library by up to one order of
magnitude.

42



3.5 CoNCLUSION

Table 3.2: Performance in the real-world scenarios. |D| is the number of data points, |Q|
the number of query points. The proposed voxel hash structure is up to one order of
magnitude faster than k-d-trees, even for large values of Mmax.

Voxel Hash, Mpmax =
Dataset |D| Q| 30 60 90 k-d-tree  ANN
ICP Matching 990,998 1,685,639 0.74s 1.04 s 141s 1219s 220s

Comparison 990,998 2,633,591 0.85s 1.29 s 1.87s 10.62s 232.1s
ICP Room 260,595 916,873 0.26 s 0.37 s 041s 097s 25s

3.4.4 Approximate Method

We conducted several experiments to compare the proposed approach for turning
the exact voxel hash method into an approximate method (see Sec. 3.3.6). We
varied two parameters of the approximate nearest neighbor structure: The number
of voxels in the explicit voxel neighborhood, and the limit on the list length,
L(D,v). We allow a neighborhood radius of 1 (using a 3 x 3 x 3 neighborhood of
voxels on each level) and 2 (5 x 5 x 5 neighborhood). We found that larger values
have little benefit regarding accuracy but high computational costs. For the list
lengths, we evaluated with limits of 1, 5 and 10. We denote the approximate
methods with, for example, 2-5 for a voxel neighborhood of 2 and a list length
limit of 5.

Table 3.3 compares the different exact and approximate methods regarding
data structure creation time, nearest neighbor lookup time and approximation
errors. In terms of nearest neighbor lookup times, the proposed approximate
method outperforms all other evaluated methods, sometimes by several orders of
magnitude. It is the fastest method we know of for comparable error rates, and
lookup times scale extremely well with the size of the dataset.

Regarding construction times, the approximate voxel methods are much faster
than the exact voxel methods, though still significantly slower than k-d-trees,
ANN, and FLANN.

3.5 Conclusion

In this chapter we proposed and evaluated a novel data structure for nearest-
neighbor lookup in 3D, which can easily be extended to 2D. Compared to
traditional tree-based methods, backtracking was made redundant by building
an octree on top of the Voronoi diagram. In addition, a hash table was used to
allow for a fast bisection search of the leaf voxel of a query point, which is faster
than letting the query point descend the tree. The proposed method combines
the best of tree-based approaches and fixed voxel grids. We also proposed an
even faster approximate extension of the method.

43



CHAPTER 3: VoxEL-HAsH BASED NEAREST NEIGHBOR SEARCH

Table 3.3: Performance of exact and approximate methods on the real-world dataset
ICP Matching. Two scenarios are tested: One with a very large data cloud D of approx.
one million points (left), one with a much smaller cloud of approx. ten thousand points
(right). fc is the time required for the creation of the data structure, t\; is the time needed
to perform around 1.6 million nearest neighbor lookups. Correct is the ratio of points for
which the returned nearest neighbor is correct and not just an approximation. Note that
the approximate ANN library returned only correct results on this dataset. emean and
€median are the errors of the approximate ICP, relative to the diameter of the target object.
An error of 1% would indicate that the approximate nearest neighbor has a distance of
1% of the object’s diameter to the exact nearest neighbor. Note that for the approximate
method 1-1 with a total query time of 0.13 s, the query time per point was only 0.23 pus.

|D| =990 998 |ID| =13 333
Method tc tm Correct emean €median tc tm Correct e€mean €median
k-d-tree 0.16 s 12.19s  100% 0 0 13ms 21s 100% 0 0
ANN 057s 23s 100% 0 0 17ms 26s 100% 0 0
FLANN 037s 93s 12% 24% 0.73% 6.1ms 2s 20% 2.7% 0.7%
Mpmax = 30 hours 0.64s  100% 0 0 18s 0.31s  100% 0 0
Mpax = 90 hours 141s  100% 0 0 64s 043s 100% 0 0

Approx. 1-1 273s 0.37s 22% 1.61% 0.60% 023s 0.13s 22% 1.6% 0.58%
Approx. 1-5 3056s 043s 35% 1.35% 0.35% 0.31s 0.18s 41% 1.2% 0.23%
Approx. 2-1  1151s 0.47s 40% 0.53% 0.18% 0.8s 0.15s 38% 0.54% 0.19%
Approx. 2-5  1267s 0.59 s 55% 0.39% 0.058% 1.2s 0.24s 63% 0.33% 0
Approx. 2-10 1341s 0.58 s 61% 0.35% 0.020% 1.4s 0.25s 71% 0.28% 0

The evaluation on synthetic datasets shows that the proposed method is faster
than traditional k-d-trees, the ANN library and the FLANN library on larger
datasets and has a query time that is almost independent of the data and query
point distribution. Although the proposed structure takes significantly longer to
be created, these times are still within reasonable bounds. The evaluation on real
datasets shows that real-world scenarios, such as ICP and surface defect detection,
greatly benefit from the performance of the method. The evaluations also showed
that the approximate variant of the method can be constructed significantly faster
and offers unpreceded nearest neighbor query times.

44



3.5 CoNCLUSION

(a) RANDOM (b) CLUSTER (c) SURFACE

Figure 3.7: Datasets used for the synthetic evaluations. The datasets show different
distributions of the target points in D: A uniform distribution in a unit cube (RANDOM),
a Gaussian distribution forming a cluster of points (CLUSTER), and points sampled
from a 2D manifold (SURFACE). We are mostly interested in distributions such as the
SURFACE dataset since we typically deal with points on the the surface of 3D objects.

45



CHAPTER 3: VoxEL-HAsH BASED NEAREST NEIGHBOR SEARCH

Random Query Distribution Same Query Distribution
=7 7
2] wn
=6 =6
k= k=
25 35
a. a,
gx 4 gw 4
&3 23
5} 3]
) L
g1 g1
B o ‘ =
102 103 10* 10° 100
Number of Points
_ 7 . 7 T T T
12} 12
=6 =6
k= k=
25 35
a a,
b4 !
: 2
53 3
5} 3]
£1 g1
r_(-‘ 0 [_‘ 0 It [
102 103 10* 10° 100
Number of Points
_ 7 _7 T T T
2 %)
=6 S6 —
= =
£5 5 | ,
a a,
&3 8 I N
g 2 _|
8.2 a2
) Q.)
£ 1 £1 A
= F = ‘ﬁ‘;—‘m
0 0
10 10° 10* 10 10
Number of Points Number of Points

Figure 3.8: Query time per query point for different synthetic datasets and methods.
Each row represents a different dataset. From top to bottom: RANDOM, CLUSTER, and
SURFACE dataset. The x-axis shows the number of data points, i.e., |D|, the y-axis shows
the average query time per query point. For the center column, query points were were
randomly selected from the bounding box surrounding the data. For the right column,
query points were taken from the same distribution as the data points. Compared to
other methods, the query time for the proposed method depends little on the number of
data points and is almost independent of the distribution of the data and query points. It
is especially advantageous for very large datasets as well as for datasets representing 2D
manifolds.

46



A Variant of the Iterative Closest
Points Algorithm

The object detection step described in Sec. 5 provides only an approximation of
the object’s pose that is correct only up to several percent of the object’s diameter.
Many applications, however, such as bin picking or surface defect inspection,
require a more accurate pose. This section describes our implementation of the
iterative closest points (ICP) algorithm, which refines a given initial relative position
of two or more point clouds w.r.t. each other. Intuitively, given some initial
positions of the point clouds, it minimizes the distances between the surfaces of
the point clouds.

The proposed variant of ICP is especially tailored toward the industrial and
robotic application scenarios, most notably to be accurate, robust, performant,
and to have as few parameters as necessary. For speedup, it employs a coarse-
to-fine approach and uses the nearest neighbor lookup structure of Sec. 3. It is
especially designed to work with the object detection schemes presented in the
subsequent chapters.

This chapter first outlines the basic ICP algorithm. It then describes in detail
the design decisions made for the proposed ICP. In Sec. 4.2, the variant that
optimizes the position of two clouds relative to each other is outlined. The
method is then extended to multiple point clouds in Sec. 4.3.

4.1 Introduction and Related Work

ICP was initially introduced by Besl and McKay [16]. As its name already
promises, ICP is an iterative method as outlined in Fig. 4.1. Given some initial
transformation from the source to the target point cloud, it iterates between
correspondence search and distance optimization. The correspondence search
finds for each point in the first point cloud the closest point in the second point
cloud, given the current transformation. The distance optimization optimizes

47



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

Input: Scene point cloud S
Model point cloud M
Initial transformation parameters pg
k<0
while not converged
Correspondence Search:
For each sc S
find ¢(pg,s, M) = argmin ,, |T(pg,s) — m|
Minimization:
P argmin, Yees [T(pr,s) — ¢(prs) 2
k+—k+1
Output: pi

Figure 4.1: Outline of the classic ICP (iterative closest points) algorithm with point-to-
point metric.

the transformation parameters such that the sum of squared distances between
corresponding points is minimized. The method always converges, essentially
because in both steps, the sum of squared distances cannot increase [16].

This two-step iteration is a compromise between computational costs and
speed of convergence. For convergence, it would be advantageous to optimize
correspondences and transformation parameters simultaneously. However, the
correspondence search is usually the most expensive part of the method. Using it
inside the optimization would require more nearest neighbor lookups, making
the method potentially slower. Fitzgibbon [53] used a pre-computed distance
transform to do exactly that, showing that it leads to faster convergence and has
a wider basin of convergence. However, such distance transforms are — as of now
— too expensive for 3D applications.

Today, ICP is a well-studied method with many proposed extensions and
modifications affecting speed and robustness. Rusinkiewicz and Levoy [114] give
a comprehensive overview for choices regarding point selection, correspondence
search and weighting, outlier rejection, error metric, and optimization method.
They also show how these choices affect runtime and convergence and propose a
real-time variant of ICP.

Design Choices In accordance to the objectives mentioned in Sec. 1.2, the design
goals of our implementation are accuracy, speed, generality, and few parameters.
In addition, it was designed to be extensible to register more than two clouds
simultaneously. We also assume that the initial transformation is already within
a reasonable distance of the optimal transformation, due to the matching method
proposed in Sec. 5. The focus of the method is thus a fast and robust local

48



4.2 Two-CLoUD REGISTRATION

convergence, rather than a wide basin of convergence. As an overview, we have
chosen the following design parameters:

* Voxel-based nearest neighbors: We use a voxel-based data structure, as de-
scribed in Sec. 3, to speed up the nearest neighbor lookups.

* Tukey-based robust weighting function: We employ an iteratively reweighted
least squares method. For this, the point correspondences are reweighted
based on the robust Tukey function, making the method more accurate and
robust against outliers.

* Point-to-plane metric: We optimize the distance between the points of one
point cloud and the planes of another cloud, which are implicitly defined
by the normal vectors of the second cloud (Fig. 4.2).

* Gauss-Newton optimization: We use an iterative Gauss-Newton method for
the optimization, which is parameter free and has fast local convergence.
This is of advantage since the initial pose given by the previous detection
method is usually already close to the optimum.

* Numeric derivatives: The required derivatives w.r.t. rotational parameters
are computed numerically, which is faster than analytic derivatives. The
derivatives w.r.t. translation are computed analytically.

* More than two clouds: The method is designed such that it can register more
than two clouds at once.

* Coarse to fine: We employ a coarse-to-fine scheme, where fewer points are
used int the first iterations of ICP to improve performance.

In the following, we first describe ICP for two point clouds and later extend
the method to two more clouds.

4.2 Two-Cloud Registration

421 Method

Model Intuitively, ICP is supposed to minimize the distance between two or
more point clouds S, M C R3, denoted scene and model, respectively. We
are interested in obtaining the parameters p of a rigid transformation T(p) €
SE(3) that transforms scene points s € S into model coordinates such that
the transformed points T(p)s are close to the model points. Note that this
transformation maps scene to model coordinates instead of vice versa, because
this allows to pre-compute a nearest neighbor lookup data structure for the model
in an offline stage.

49



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

Formally, we model the distance between the two point clouds as the sum of
squared distances between the transformed scene points and their closest model
point. The target energy we want to minimize is then

E(p) = )_ wsd(s, ¢(p,s, M))? (4.1)
seS
where d is the distance metric to be minimized and ¢(p, s, M) the closest point in
M to T(p)s. ws is a weighting factor that allows a robust refinement in presence
of noise and outliers and that is described further below.

Gauss-Newton Minimization In order to minimize (4.1) we employ the Gauss-
Newton method, an iterative optimization method for least-squares problems [53].
Alternative methods are possible; however, methods such as gradient descent or
Levenberg-Marquardt are tailored towards situations where the initial parameters
are rather far away from the optimum, while Gauss-Newton has a fast local
convergence. This is advantageous for us, since we expect to already have a good
approximation from the detection method of Sec. 5. Additionally, alternative
methods often require additional parameters for controlling certain step sizes,
while the Gauss-Newton method is parameter free.
Following [53], we can re-write the energy (4.1) as

E(p) = )_ Es(p)®, Es(p) = Vwsd(s, ¢(p,s, M)) (42)

seS

and define the vector of residuals e(p) = {Es(p)}secs such that E(p) = |e(p)|?.
Then,

E(p) =ele (4.3)
VE(p) =2(Ve)Te (4.4)
V2E(p) = 2(V?e)e +2(Ve) Ve (4.5)

We denote the Jacobian matrix by | = Ve = (6E;/6p;)s ;.

We are interested in the update d that minimizes E(p + d). The Gauss-Newton
formula, obained by applying the Gauss-Newton approximation (V2e)e ~ 0
in the Taylor expansion of E(p + d) after setting the derivative of the latter to
zero [53], states for the kth step,

(J'Ndx = —]e (4.6)
Pr+1 = Pk +di (4.7)

Parametrization of Update If the parameter vector p is an overparametrization
of the underlying transformation, for example, when using a rotation matrix
to parametrize a 3D rotation (see Sec. 2.1), the matrix | Ty might become ill-
conditioned. In such cases, it might be of numerical advantage to re-parametrize

50



4.2 Two-CLoUD REGISTRATION

o Y o ® dpoint

_?___I___. _______ I._ _____ G- ..T________‘.....__?_ dplane

Figure 4.2: Visualization of the point-to-point metric dpoint (top) and the point-to-plane
metric dpjane (bottom) of two differently sampled clouds (blue, red). Note that even
though the alignment is good, dpoint adds significant amounts of energy due to the
sampling of the red cloud. The distance measure dpjane approximates an infinitely densly
sampled red cloud and measures the distances between the blue points and the actual
surface from which the red points were sampled.

the update using a vector ¢ that has a smaller dimension than p. Ideally, the
dimension of ¢ equals the number of degrees of freedom. Formally, the energy to
be optimized is then

E(6o+6) = E(T(60+6)p) (4.8)

where T(6)p applies the updating transformation parametrized by J to the
parameters p. Following (4.6), the update is

(J'Ns=—]"e (4.9)
Prs1 = T(bo+0)p (4.10)

We use this re-parametrization mostly for rotations: When parametrizing
a 3D rotation in the transformation parameters p, it is of advantage to use a
parametrization that is easily applicable to vectors, such as quaternions or rotation
matrices. However, for these, the update would be overparametrized. Because of
this, we use the Rodruiges parametrization for the update J, which is minimal.
Most notably, it is continous around the identity rotation, which is where we
expect an updating rotation to be.

The re-parametrization is also used for the refinement of cylinders in Sec. 7.2.4.

Nearest Neighbor Search Historically, the computationally most expensive part
of ICP is the correspondence search. We use the voxel-based nearest neighbor
search introduced in Sec. 3 to speed up the search, using the approximate search
introduced in Sec. 3.3.6, which has a slow pre-processing but a fast lookup. This
is advantageous for the typical use-case we face, namely searching for an object
that is known beforehand such that there is time for expensive pre-processing.
Note that instead of using the voxel hash nearest neighbor lookup, one could
also use a k-d-tree or other methods. For example, the refinement performed in
Fig. 4.3 took 104 ms with an k-d-tree and 57 ms with the voxel hash method, a
speedup of almost factor 2. The complete detection of the 10 object instances

51



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

Figure 4.3: Example for ICP: Before refinement (left), after refinement (right). The
refinement took 57 ms using the voxel hash method, and 104 ms using a k-d-tree for the
nearest neighbor lookups. The initialization has a relative distance 711 norm ~ 0.28 from
the ground truth.

shown in Fig. 3.6a took 190 ms with the voxel hash method and 320 ms with a
k-d-tree.

Metric Two metrics are common for ICP. The point-to-point metric
dpoint(a,b) = [a — b (4.11)
optimizes the distance between points, while the point-to-plane metric
dplane(a,b) = (a—b) -n(b) = (a—b)"n(b) (4.12)

optimizes the distance between a and the plane defined by b and its normal
n(b). Our implementation of ICP uses the point-to-plane metric, since it is more
robust w.r.t. different sampling distances of the point clouds. In particular, it
allows points of one surface to lie in between points of the second surface without
additional energy costs, which allows a sparser sampling of the second surface.
Fig. 4.2 illustrates this fact. Note, however, that while dpint has a closed-form
solution for the update of the parameters [16], dpjane has no such closed-form
solution. We thus need to solve the update step using an iterative method.

Note that our implementation is a hybrid, since the correspondences are
found based on the point-to-point metric. As a result, the theoretical guarantee
of convergence breaks, since the energy might increase when re-computing the
correspondences: A point closer in terms of dpoint might be further away in terms
of dpjane- However, we found that this has no noticeable effect in practice, also
because we sample the target surface uniformly.

52



4.2 Two-CLoUD REGISTRATION

Parametrization We parametrize the transformation T(p) as p = (t,7) € R3 x R>.
The translation vector t is used directly, while r is interpreted as Rodruiges-
parametrization of the rotation (see Sec. 2.1). The transformation of a scene point
s is then

T(p)s=T((t,r))s=R(r)s+t (4.13)

As described in Sec. 2.1, parametrizations of rotations with 3 parameters al-
ways have at least one singular point. In order to avoid this problem, we solve for
the update 5p = (6r, 6t) of the transformation instead of the new transformation,
such that

T(px) = T(6p)T(pr-1) (4.14)

The rotation angle of the update Jp is typically only a few degrees. This is well
within the range where the Rodruiges-parametrization is non-singular.

Derivatives In order to compute |, we need to calculate the partial derivatives
SE;

5, For the point-to-plane metric and p = (t,r), we have

Es(p) = Vws(R(r)s +t = ¢(p,s, M)) - n(¢(p,s, M)) (4.15)

For convenience, we set m = ¢(p,s, M) and obtain
Es(p) = Vws((R(r)s —m) - n(m) + - n(m))
= Vws((R(r)s —m) - n(m) + tyn(m)y + tyn(m), +t;n(m);)  (4.16)
The partial derivatives w.r.t. the components of t are then simply the weighted
components of the normal vector 7n(m):

0Es
oty

= wsn(m)y, de{xyz} (4.17)

In particular, they are constant for a fixed correspondence and thus need to be
computed only once per Gauss-Newton optimization step.

The partial derivatives w.r.t. the rotation components in r are more complicated
to derive analytically, since they include the derivative of the matrix R(a,«)
(compare (2.2)). We found that instead of using the analytical derivative, using a
tirst-oder numerical approximation is more practical. Formally, we compute

0E

5. = (Es(p+(0,0,0,5001,0,0)) = Es () /O

OEs

5ry = (ES(P + (01 0,0,0, 5r0t/ 0)) - Es(p))/érot

0Eg

or = (Es(p + (O/ 0/ Or O/ 0/ 5r0t)) - ES(P))/érot (4.18)
z

where in practice, we use Jrot ~ 0.1.

53



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

1 /TN
,'/ \\
0.8 - .
06 - ]
3 /
04 - -
0.2 - N
0 / \ \J
‘dmax 0 dmax

d

Figure 4.4: Weighting function for the robust refinement (see (4.19)). Close correspon-
dences are weighted higher, correspondences further away than dmax have a zero weight.

Robust Refinement An important aspect of refinement algorithms is the ro-
bustness against noise and outliers. The quadratic factor in the least-squares
formulation leads to a strong influence of outliers onto the final result. A common
approach to reduce this influence is to use the weighting factors of (4.1) to reduce
the impact of outliers: The larger the distance between two corresponding points,
the lower their influence on the result. The weights are re-computed after some
iterations, making it a Iteratively reweighted least squares (IRLS) method [122, 66].

We compute the weights based on some maximum distance dmax between two
corresponding points. Given a correspondence ¢ with distance d between the two
corresponding points, the weight is

{(1 — /2 )2 if d < diax

we =w(d) = (4.19)

0 else
The weighting function w(d) is based on the Tukey Biweight [10, 134, 97], and is
visualized in Fig. 4.4.

The parameter dmay is initialized using some a-priori information about the
expected accuracy of the initial transformation. For example, for the rigid 3D
matching of Sec. 5, this accuracy can be estimated based on some of the used
sampling rates.

If the convergence stalls, dmax is reduced in order to remove additional outliers.
For this, we first fit a Gaussian distribution into the current set of distances D.
This is done efficiently by computing the median of D and using the median
absolute deviation to estimate the mean as

o ~ 1.4826 median(D) (4.20)

Note that this assumes that the median of the signed distances is approximately
zero and that the noise on the distances is of Gaussian nature. We set the new
dmax to 20, which — again assuming Gaussian noise — covers around 95% of the
correspondences. This way, strong outliers are suppressed, as their distance is
likely larger than 2¢, and thus their weight will be set to zero.

54



4.2 Two-CLoUD REGISTRATION

Input: Scene point cloud S
Model point cloud M
Initial transformation parameters pg
Maximum distance dmax

for k from 1 to max_num_steps
Correspondence Search:
For each se€S§
Find ¢(px,s, M) = argmin . |T(pi,s) — m|
Compute weight w§ = tukey(|T(pg,s) — ¢(pr, s, M)|)

Perform Gauss—Newton optimization to compute py
if GN-update not successful

Compute new dmax using (4.20)

If dmax did not change much

return

Output: pi

Figure 4.5: Outline of the full ICP algorithm. The correspondences are kept fixed, and
several iterations of Gauss-Newton are performed to optimize the parameters w.r.t. the
current correspondences. If the update step failed to improve the result, the distance
threshold is adjusted, which effectively removes noisy and outlier points from the
optimization.

4.2.2 Experiments

We performed several synthetic experiments to measure the behavior of the
proposed ICP w.r.t. noise and clutter, as well as its basin of convergence. For
this, several thousand scenes were rendered from random viewpoints, and ICP
was performed with different settings of noise, initialization, clutter, and number
of scene points. We measured the relative error using the mj orm metric, as
explained in Sec. 2.2.4, (2.37).1 Additionally, we show the error in rotation and
the relative error of the translational components of the final pose.

Three objects were used: The Stanford bunny [124], the pipe joint (see Fig. 3.6)
and a simple box. The box shows a typical failure case of ICP: In scenes where
only two sides of the box are visible, ICP is unable to recover one degree of
freedom of the transformation. Since we measure over several thousand scenes,
many of them will have only two sides visible, leading to a significantly lower
accuracy of the box compared to the other two objects. The bunny is rather

1 As reminder, M1 norm is the maximum distance of a surface point from its ground truth location, relative
to the diameter of the object.

55



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

Input: Correspondences C
Scene point cloud S
Previous transformation T(p)

For j from 1 to max_num_gn_steps
Compute residual vector (Es)ses using (4.2)
Compute Jacobian using (4.17) and (4.18)
Solve update (]].T]j)d]:—]jTej (see (4.6))
using LU-decomposition of JT]

ph=pia+d
Compute energy E;.‘ =ETE

Find best step j*:argminjE;‘

Return p{

Figure 4.6: Outline of the Gauss-Newton update step for ICP. The parameters are updated
iteratively for several steps, and the corresponding energy is computed after each step.
Note that a Gauss-Newton step is not guaranteed to improve the result. Because of this,
we compute the actual energy after each step, and return the best parameters.

well-behaved, showing a distinctive geometry and no symmetries. The joint is
somewhat in between: Its large cylindrical part has several symmetries, which are
broken by the smaller joint. Depending on the viewpoint, the symmetry-breaking
joint might be visible or not.

Fig. 4.7 shows the result of adding Gaussian noise to the z-component of
the individual points of the rendered scenes. This models typical noise of well-
calibrated range sensors, where noise in the measurement of z exists, while x and
y are recovered correctly from the calibration. The amount of noise is measured
relative to the diameter of the model: o = 0.03 means that the Gaussian noise
had a standard deviation of 3% of the model’s diameter.

Fig. 4.8 shows the results of adding random, additional clutter points to the
scenes. The clutter points were put into the bounding box of the target object,
meaning that they were rather close to the target shape.

In Fig. 4.9, we measure the basin of convergence: The method is initialized
with transformations that are increasingly different from the ground truth. We
measure the deviation of the initial transformation from the ground truth using
the relative error measurement 1 yorm. The bunny and the joint show clear and
large basins of convergence, where relative errors up to ~ 0.2 are successfully
compensated. The box shows the afore-mentioned behavior. To get a visual
intuition of the relative distances, Fig. 4.3 shows an example of an initialization
with m1 porm ~ 0.28.

56



4.2 Two-CLoUD REGISTRATION

0.04 T T 1.8 T I
0.035 Pipe Joint ——— d 16 - PipeJoint ——
) Box X 14 - Box
._ 0.03 B . : %
<) unny —*— S 4oL Bunny
5 0025 A g b
[0) — 1 I~
.02 - *
z 002r 1 3 o8-
E 0.015 g o6
0.01 - . 04 L
0.005 - . 02 L
0 *== 0 == ! ! I
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04
Noise (0) Noise (0)
(a) Noise vs. relative error (b) Noise vs. rotational error
0.018 \ \
0.016 | Pipe Joint —— 4
K
pome L2
& 0012 |- y
5§ 001F
T 0.008 - :
[72]
E 0.006 - N
= 0.004 | N
0.002 - B
0 %t
0 0.01 0.02 0.03 0.04 0.05
Noise (0)

(c) Noise vs. translational error

Figure 4.7: Influence of Gaussian noise on the accuracy of ICP. The amount of Gaussian
noise added to each point is measured relative to the diameter of the model. The relative
eITOr M1 norm 1S shown, the error in the rotational component (in degrees) and the relative
error in the translational component of the result w.r.t. ground truth. The graphs show
the results of several thousand artificially rendered scenes. Note how geometrically
diverse objects, such as the pipe joint and the bunny, behave much better than an object
like the box, which has many self-similar, planar sides.

Note that the exact errors w.r.t. noise and clutter also depend on the number
of points in the scene that form the object. More points allow the method to
recover a more accurate pose, as statistical effects with start to cancel the errors
out. Fig. 4.10 shows how the number of points in the scene affects the overall
results: More points lead to a more robust result, since there will be more points
to compensate the errors.

To conclude, the accuracy of the proposed ICP depends on the scene point
noise, the number of scene points, and the shape of the object, while the influence
of clutter points is effectively reduced.

57



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

0.046 T T 1.9 T T
0.044 — Pipe Joint —— > 1.8 - PipeJoint —— -
0.042 Box - 17 L Box |
S 0.04 - Bunny —*— - 5 4160 Bunny —*— i
o 0.038 F 1 o 1'5 B B
(] = . 3
2 0.036 - T 0B 7
% 0.034 | é’ 1.4 7 M
€ 0032 4 < 13 P
003 [ //k\\ =i 12 B /\0- '/7’\#”*\//\(—7/\ ]
0.028 (\ //T +,,—+wﬂ\\‘>7 ///\\# ,T/k / T\/“ + 11 fk\*xﬁ/ | ~ *\‘F / | | |
0.026 — - 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of clutter points Number of clutter points
(a) Clutter vs. relative error (b) Clutter vs. rotational error
0.02 I \
0.019 - Pipe Joint —— =
5 0.018 - Box il
E 0017 - Bunny )
5 0.016 - N
= 0.015 x -
g 0.014
o 0.013 - o
- / +~
0.012 £ e N\% ]
0011 | ****f\//\ .
0.01 1 1 1 1
0 2000 4000 6000 8000 10000

Number of clutter points

(c) Clutter vs. translational error

Figure 4.8: Influence of clutter points on the accuracy of ICP. Gaussian noise with
0y = 0.05 was added to each scene. Several thousand artificial scenes were rendered
and a certain amount of additional clutter points were added to each. The points were
added within the bounding box of the target shape, i.e., rather close to the object. The
robust reweighting of the proposed ICP successfully compensates even for large amounts
of clutter, such that the results show only a small trend upwards.

4.3 Multi-Cloud Registration

Some applications require a simultaneous pose optimization of more than two
point clouds. For example, an object can be reconstructed from multiple, partially
overlapping scans from different directions. If the precise position of the scanner
is unknown, one can first approximate the relative poses between the scans
through pairwise registration and then optimize all positions simultaneously in a
global manner.

4.3.1 Method

It is straightforward to extend the ICP method described above to the registration
of more than two point clouds. To avoid overparametrization, we fix the pose
of one of the clouds and compute the other poses relative to that fixed cloud.
Additionally, the energy function must be adapted, since now the position of

58



4.3 MuLTI-CLOUD REGISTRATION

0.5 T T 20 T T
Pipe Joint —+—— Pipe Joint ——
04 + Box Box |
& Bunny —*— 5 15 Bunny —*—
& 03 - @ /
2 & 10 i
[ < oL i
01 *
0 *—x—k—xl — 0 ——*—x =
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Relative initial error Relative initial error
(a) (b)
0.4 T T
0.35 - Pipe Joint —+— il
. | Box i
% 0.3 Bunny —x—
c 0.25 - B
E 0.2 -
2 015
@
E  01F
0.05 -
0 k=
0 0.1 0.2 0.3 0.4 0.5

Relative initial error
(c)

Figure 4.9: Influence of accuracy of the initial transformation on the result of ICP. The
figures show the accuracy of the results w.r.t. the accuracy of the initial transformation.
The graphs show aggregated results over several thousand scenes. Overall, relative
errors up to ~ 0.2 were successfully compensated. Note that the box, which consists of
many planar sides, is more difficult: If only one or two sides of the box are visible, it is
impossible for ICP to recover one degree of freedom.

both points of a correspondence can change.

Notation We are given a set of M + 1 point clouds Sp, Sy,...Sy and a set of
M initial transformations T, T9,... Ty, € SE(3) of all but the first cloud. The
transformations map the clouds into the coordinate space of the first cloud.
Similar to the two-cloud ICP, we parametrize the transformations in a single
vector p that concatenates translation and rotation components of all clouds.
We write p; = (t;,7;) for the parameters of cloud i. T; is the transformation
corresponding to p;, with

Tix = R(ri)x +t; (4.21)

For simplicity of notation and to avoid over-complicated if-else-cases, we will
sometimes write pg for cloud 0, even though that transformation is fixed to be
identity. The number of parameters is 6M, 3M for the rotations and 3M for the

59



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

0.011 T T T T
0.01 Pipe Joint —— —+ Pipe Joint ——
0.009 Box — Box b
S 0.008 Bunny —*— - S Bunny —*— 7
© 0.007 @ |
2 0.006 - 8 |
B 0.005 - 3 o e N
4 0.004 — < 0.08 777"7+"""~+—,,,+,,7 _
0.003 - 0.06 - I
0.002 - — 0.04 - i
0.001 ‘ ‘ ‘ ‘ 0.02 : : : :
50 2000 4000 6000 8000 50 2000 4000 6000 8000
Number of scene points Number of scene points
(a) (b)
0.009 T \
0.008 - Pipe Joint —— |
= Box
o 0.007 - Bunny —*— |
©  0.006
o
5 0.005
2 0.004
@
~ 0.003

0.002

0.001 | | i
50 2000 4000 6000 8000

Number of scene points
(c)

Figure 4.10: Number of scene points vs. final accuracy of ICP. Gaussian noise with
0rel = 0.01 was added to each scene. As expected, the more points are available, the more
accurate the refined pose will be.

translations.

Nearest Neighbor Search A common use-case of the above two-cloud ICP is to
refine the position of a fixed object in varying scenes, for example, a machine
vision system used to detect a single object only. In this case, it makes sense to use
the voxel hash data structure from Sec. 3 for nearest neighbor search, which has
a more expensive pre-processing phase but processes nearest neighbor queries
much faster. In the case of multi-cloud ICP, though, a common use-cases is to
refine the positions of multiple scans of a scene only once. In this case, a tradeoff
must be found for the time invested in the data structure creation and time used
for the nearest neighbor queries.

Such a tradeoff is difficult to find analytically. Fig. 4.11 shows examplary
timings for data structure creation and alignment. Overall, for setups where
the data structure creation is not separated from the refinement phase, k-d-trees
perform faster. If an offline phase is available, voxel hashes are faster.

60



4.3 MuLTI-CLOUD REGISTRATION

T T
Time Model Creation
Time Refinement ==

Time [s]

voxel k-d-tree

Figure 4.11: Timing for non-parallelized multi-cloud ICP on three point clouds. Using
the voxel data structure leads to a faster on-line phase (495 ms for voxels, 641 ms for
k-d-trees) but a slower data structure creation (1 second for voxels, 140 ms for k-d-trees).

Correspondence search For each point a € S; in one of the clouds and all other
clouds S;,j # i, the corresponding closest point b = ¢(p, a, S;) is searched. We
denote by ¢ = (a,b) € C the set of all found correspondences. As for the two-
cloud ICP, we ignore corresponding points if their distance is larger than the
current threshold dpax.

Note that in the worst case, such as all clouds being equal, the number of
correspondences is |C| € O(SM?), where S is the average point cloud size,

— 1 M
S = marr Limo I51-

Energy Given a correspondence ¢ = (a,b) between a point a € S; and its closest
point b = ¢(p,a,S;) € S, the energy function for that correspondence reads

EC(P) = \/w_c dplane(Tiar T]b)
= Vwe ((Tia—Tjb) - (R(rj)n(b)))

= Vwe ((R(ri)a+t) = (R(r))b +t)) - (R(rj)n(b))) (4.22)
The global energy function is then
E(p) = L Ecp)® (4.23)
ceC

Derivatives The derivatives of E; w.r.t the translational parameters can be com-
puted analytically from (4.22):

8 = (R (r7)n(b))g
OE. _

55 = —Va(R(rj)n(b))g
The rotational derivatives w.r.t. r; and r; are computed numerically, similar to the
case of only two clouds (see (4.18)). The derivatives w.r.t. translation and rotation
parameters of all the other clouds are 0.

de{xyz}

61



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

1x108 T T T

E

100000 L\ ICI _
Average E.
10000 L k ]
1000 [ .
100 [ ]
10 [ ]
Tt i
01 1 1 |
0 50 100 150 200

Iterations

Figure 4.12: Example of the development of the total energy E, the number of corre-
spondences |C| and the average energy (distance) per correspondence, /E/|C| during
a multi-cloud ICP with four point clouds. The vertical lines in cyan indicate where the
correspondences were re-computed. In the steps in-between, iterations of the Gauss-
Newton optimization are performed. The vertical line in red indicates where the distance
threshold dmax was adapted. Overall, the average distance dropped from 3.2 to 0.25.

Avoiding the Explicit Computation of the Jacobian The Jacobian | of the multi-
cloud optimization has the dimensions |C| x 6 M. As discussed above, the worst
case for |C| is |C| € O(SM?), such that the size of | is O(SM?3). However, ] is
sparse, since at most 12 entries — 6 for both clouds — for each correspondence are
non-zero.

To avoid excessive memory usage, we compute /7] and J”e inline by iterating
over the correspondences and updating the corresponding entries of J7] and
JTe. The processing time for this is O(|C|), which is bound by O(M?). Note that
the worst case occurs only if all clouds share significant overlap. JT] is of size
6M x 6M and JTe of size 6M, which is in practice orders of magnitudes smaller
than J.

Robust Refinement In order to reduce the influence of outliers, the same weight-
ing scheme as for the two-cloud refinement is used, with the only difference
that for the update of dmayx, the correspondences between all point clouds are
considered, instead of only the correspondences between two clouds.

4.3.2 Experiments

The base method of the multi-cloud ICP is identical to that of the single-cloud ICP.
In order to rule out any additional negative effects, Fig. 4.13 shows the resulting
accuracy for simultaneously registering 13 synthetic point clouds. Overall and as
expected, there is a direct correlation between the input and output noise.

Fig. 4.14 shows a real-world example of the multi-cloud method: 15 stereo
scans of a scene were taken and aligned pairwise. The resulting chain of transfor-

62



4.4 PARALLELIZATION

0.05 T
0.045 - Pipe Joint
Box
Bunny ;

0.04 -
0.035 -
0.03 - 7
0025 pF X .
0.02 - -
0015+ . / -
0.01 1 ! ! ! !

0 0.01 0.02 0.03 0.04 0.05

Noise (0)

Relative error

Figure 4.13: Influence of noise on the accuracy of the multi-cloud ICP. Three differ-
ent objects, pipe joint, box and bunny, were rendered from 13 directions. The initial
transformations were slightly disturbed, and the multi-cloud ICP was run on all clouds
simultaneously. Gaussian noise was added to the point positions of the point clouds,
with varying oy, which is given relative to the diameter of the corresponding model.

mations was used to initialize the multi-cloud ICP, which produced the presented
result. The multi-cloud ICP took around 4 seconds.

4.4 Parallelization

The runtime of ICP is dominated by the nearest neighbor search and the com-
putation of the JT] and JTe. A parallelization of both steps of the ICP algorithm
is straightforward. It allows to use all available CPU cores with very little
synchronization overhead.

* For the correspondence search, each thread processes a subset of the points.
No synchronization between the threads is necessary.

* For the in-line computation of | TT and JTe, each thread processes a subset
of correspondences and updates a local copy of the matrices. The matrices
are combined after all threads are finished. No synchronization between the
threads is necessary. Since | T] and JTe are only of size 6M x 6 M and 6M,
respectively, the overhead for storing and combining the results of different
threads is negligible.

Note that for the rigid object detection pipeline in Sec. 5, however, ICP was
not parallelized. Instead, multiple candidates are tracked by different threads,
effectively moving the parallelization to a higher level.

63



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

4.5 Coarse-to-Fine

The ICP method is usually applied to the complete set of scene points. Depending
on the sensor resolution, some ten- to hundred thousand points might be included.
We found, however, that a much smaller number of scene points is usually
sufficient to already significantly increase the accuracy of the object’s position.
The upside of using fewer points is that ICP is significantly faster, since both of
the most time-consuming steps — finding nearest neighbors and computing the
JTT and JTe — are linear in the number of points. Fig. 4.15a illustrates this fact.

We thus propose to use a coarse-to-fine approach for ICP, where the pose is
first refined on a coarse level, using only few scene points. The result is used to
initialize the refinement on the next finer level, using more scene points, which
hopefully requires fewer iterations owning to the more accurate initialization.
This step is repeated until the full number of scene points is reached.

We choose the number of scene points to be used in each step such that they
form an approximate geometric progression between a minimum number of
scene points, fmin, and the actual number of scene points |S|:

N = (nmin/ XMmin, mznmin/ ceey |S|) (4-24)
For example, for nyin = 130 and |S| = 10000 and four scene levels,

5/ 10000
=\ ——— 4.2 4.2
o 130 5 (4.25)
ICP would thus be performed on sampled scenes with the approximate number

of points
N = (130, 550, 2350, 10000) (4.26)

Several strategies are possible for selecting the number of levels, such as using a
fixed number of levels or using a fixed progression factor a.

Fig. 4.15b shows the result when using a four-step approach on the same
dataset used for Fig. 4.15a. Only a single iteration of ICP is performed per
level, initialized with the result of the previous level. While the relative error
between the regular and the coarse-to-fine approach is comparable, there is a
significant speedup when using the coarse-to-fine approach. For larger scenes,
the coarse-to-fine approach can be over 3 times faster compared to ICP on a single
level.

Rigid Object Detection Pipeline Looking ahead a bit, Sec. 5 will introduce a
voting scheme for detecting rigid objects in 3D point clouds that returns ap-
proximate poses of the object. Those approximations are then refined using the
ICP proposed in this chapter, using a two-step coarse-to-fine approach: The first

64



4.6 CONCLUSION

refinement is performed on a sparsely sampled version of the original scene,
while the second refinement is performed using all scene points.
This approach has three major advantages:

1. More accurate quality rating: Sparsely refined poses allow a more accurate
estimation of the quality or score of the pose. The number of votes of a
pose is subject to noise, for example because of sampling and scene noise.
Even a fast run of ICP on a sparsely sampled scene allows a more accurate
computation of the quality of a pose. This in turn allows the method to
concentrate on better poses for subsequent processing first, leaving other
poses for later.

2. More accurate pose comparison: Sparsely refined poses allow for an improved
non-maximum-suppression in the pose space. The voting can lead to several
similar poses, all of which represent the same underlying correct pose.
Sparse refinement makes them move closer to the ground-truth pose, which
in turn allows to remove all of them once the correct pose was found.

3. Speedup of subsequent refinement: Similar to the coarse-to-fine approach above,
since the initial pose is more accurate, less iterations of the slow refinement
that uses more or all scene points are required.

4.6 Conclusion

This chapter introduced a variant of the Iterative Closest Points algorithm for
refining an approximate pose of a rigid object, designed to be accurate, robust,
performant, and to have as few parameters as necessary. It was specifically
designed to refine the pose of an approximate object detector, trading a smaller
basin of convergence for faster and more robust refinement. The refinement
speed is optimized by using the voxel-based nearest neighbor method and by
employing a coarse-to-fine approach on multiple sampling levels of the scene
point cloud. The method was finally extended to allow refinement of more than
one point cloud simultaneously. The experiments show that the method is fast
and highly robust against noise and clutter points.

65



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

(a) Aligned point clouds. Different colors represent different clouds.
e EERRR—

(b) Triangulated result

Figure 4.14: Exemplary result of multi-cloud ICP. 15 scans of a scene were taken using
a stereo system. The scans were aligned pairwise sequentially to obtain initial transfor-
mations, and the resulting transformations were globally aligned using the presented
multi-cloud ICP.

66



4.6 CONCLUSION

08| —rrr e 25 08| —rrr e 25
07 - Relative error —+— 07 L Relative error ———
' Refinement time 4 ' Refinement time .
. 06, 20 . 06 20
o \ o X,
5 05 - 15 & 051 % -+ 15
2 04w g 2 o04r *\& 2
2 03 el 110 S o3t *\4\% 110
4 | - 4 |
0.2 *\KNN 1s 0.2 e A s
0.1 Py 0.1 - ++V+V'H\+‘H~H+
ol : s Tl | Ll 0 Ol vorraid Ll 0
130 1300 13000 130 1300 13000
Number of scene points Number of scene points
(a) ICP on full scene only (b) Coarse-to-fine approach

Figure 4.15: Motivation of coarse-to-fine refinement. (a): Influence of the number of scene
points on the refinement accuracy and refinement runtime. The values were measured on
an artificial scene with Gaussian noise. As one would intuitively expect, using more scene
points leads to a higher accuracy at the price of higher runtimes. (b) A coarse-to-fine
approach of ICP, where first a fast refinement is performed with only few scene points.
The result is then used to initialize ICP on more scene points, but with fewer of the more
expensive iterations. Here, a total of four such differently sampling densities was used.
While the accuracy is comparable to the full ICP in (a), runtime is significantly improved,
especially for large scenes.

67



CHAPTER 4: A VARIANT OF THE ITERATIVE CLOSEST POINTS ALGORITHM

68



Part 111

Matching in 3D Point Clouds

69






This part introduces four novel object detection methods for different kind of
modalities, object classes and transformation types. All four methods are build
on the same framework: A Hough-Transform like voting scheme that uses a
data-driven, local parametrization. For this, the object’s location is parametrized
relative to a fixed point of the observed scene that is assumed to be on the
surface of the object. The voting scheme uses point pair features that describe the
geometric relation of two points.

The four detection methods differ in the details of the parametrization, of
the feature and of the voting. The following table gives an overview over the
methods and their differences. While the details are given in the corresponding
chapters, this table serves as an overviewing guide. It is recommended to start
reading with Sec. 5, which explains the baseline method in detail. The other three
chapters are then independent of each other.

Method Rigid Multimodal Primitives Deformable
(§5) (§6) (§7) (§8)
Input Data 3D point cloud RGB-D data 3D point cloud 3D point cloud
Transformation Rigid Rigid Rigid Deformable
Parameters local (§5.3.3) local reduced local  local
+ shape
(§7.2.2)
Features 3D point pairs Multimodal 3D point pairs 3D point pairs
(§5.3.1) point pairs
(§6.3.1)
Model hash table hash table Implicit or hash table
(§5.3.2) hash table
(§7.2.3)
Voting 1 round 1 round 1 round > 1 rounds,
(§5.3.4) using graph
(§8.2.4)

The basline method has several advantages over prior art, such as speed,
robustness, accuracy and a certain optimality, all of which are inherited by the
other three methods.

71



72



Rigid Object Detection in 3D Point
Clouds: A Local Voting Scheme

One of the challenges in 3D computer and machine vision is the detection and
localization of rigid 3D objects in 3D point clouds. Such a localization is an
important step in many applications. For example, the position of the objects
can be fed to a robot for manipulation, or the 3D data can be used to inspect the
object for completeness. This chapter introduces a novel approach to 3D object
detection. At its core, it is a voting scheme that uses point pair features on a
restricted, data-driven, local parameter space. This voting scheme is integrated
into a detection pipeline that removes duplicate poses and further refines the
results.

The evaluations on multiple synthetic and real-world datasets show that it is
a fast, robust and generic object detector. Combined with a refinement scheme,
such as the ICP variant of Sec. 4, it is also highly accurate.

Parts of this chapter previously appeared in [46].

5.1 Introduction

The recognition of free-form objects in 3D data obtained by different sensors, such
as laser scans, time-of-flight cameras and stereo systems, has been widely studied
in computer vision [22, 87, 91]. Global approaches [76, 108, 110, 123, 150, 156] are
typically neither very precise nor fast, and are limited mainly to the classification
and recognition of objects of certain type. By contrast, local approaches that are
based on local invariant features [15, 31, 40, 55, 75, 92, 111, 115, 126, 133, 139, 35]
became extremely popular and proved to be quite efficient. However, defining
local invariant features heavily depends on local surface information, which is
directly related to the quality and resolution of the acquired scene and model
data.

In contrast to the approaches outlined above, we propose a method that is a

73



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

hybrid between local and global approaches. The model is described in a global
manner, by describing all pairs of surface points using point pair descriptors,
and by collecting all those pairs in a global model description. Matching, or
pose recovery, is done locally, by using a voting scheme on a locally restricted
parameter space: After fixing one scene point, only those poses are considered for
which that scene point lies on the object surface. The point pair feature describes
the relative position and orientation of two oriented points. The global model
description consists of all model point pair features and represents a mapping
from the feature space to the model, where similar features on the model are
grouped together. Such a representation provides a global distribution of all
point pair features on the model surface. Compared to the local methods, which
require dense local information, our approach allows the model and the scene
data to be represented only by a sparse set of oriented points that can easily be
computed from the data of most 3D input devices and methods. Using sparse
data also allows for an important increase in the recognition speed, without
significant decrease in the recognition rate. A fast voting scheme, similar to the
Generalized Hough transform [7], is used to optimize the model pose in a locally
reduced search space that is parametrized in terms of points on the model and
rotation around the surface normals.

We test our approach on a number of synthetic and real sequences and
compare it to state-of-the-art approaches. We demonstrate that in the presence of
noise, clutter, and occlusions we obtain better results than Spin Images [75] and
Tensors [92] in terms of recognition rates and efficiency.

5.2 Related Work

The problem of detecting and recognizing free-form objects in three-dimensional
point clouds is well studied. Methods such as ICP [158] optimize a coarse
registration locally (see also Sec. 4). In contrast, we are only interested in methods
for object registration that do not need an approximate pose as input.

Global Methods Several global methods for 3D object detection have been pro-
posed. However, they either detect only parametrized shapes such as planes,
cylinders and spheres, or require an a priori segmentation of the scene. Sev-
eral approaches detect objects using a variant of the Generalized Hough Trans-
form [76, 110, 156] but are limited to primitive objects because the recovery of a
full 3D pose with 6 degrees of freedom is computationally too expensive. Schn-
abel et al. [123] detect primitives in point clouds by using an efficient variant of
RANSAC. Park et al. [108] detect objects in range images by searching for patterns
of the object created from multiple directions. They parallelize their algorithm on
the GPU in order to obtain matching times of around 1 second. By contrast, our

74



5.2 RELATED WORK

approach works with general 3D point clouds and is more efficient on the CPU
without parallelization.

Local Methods A second class of methods, local methods, usually use a pipeline
that first identifies possible point-to-point correspondences between the model
and the scene. Multiple correspondences are then grouped to recover the pose of
the model.

One way of finding the correspondences is the use of local point descriptors or
local surface descriptors that describe the surface around a certain point using some
low-dimensional representation. The descriptors must be as discriminating as
possible while being invariant against a rigid movement of the surface, robust
against clutter and noise, and embedded in a framework that can deal with
occlusion. Point correspondences are built by comparing the descriptors of
the model to those of the scene, usually using some high-dimensional nearest
neighbor retrieval. Most of the local methods concentrate on the design of the
local surface descriptor. This might be motivated by the encouraging results
of local 2D image descriptors such as SIFT [85], which have been applied very
successfully over the last decades. Extensive surveys over different descriptors are
given in [22, 87, 91] and more recently in [62], which is why only a few selected
ones are covered here.

Point descriptors can be categorized by the radius of influence that affects
them. Local descriptors exploit the geometric properties around a surface point,
most notably by using different representations of the surface curvature [15,
40] or by fitting polynomials [111] or splines [35]. Regional descriptors try to
capture the surface shape around the reference point. Splashes [133] describe the
distribution of normal orientations around a point. Point Signatures [31] use the
distance of neighboring points to the normal plane of the reference point. Point
Fingerprints [139] use geodesic circles around the reference point as description.
Gelfand et al. [55] introduced an integral descriptor for point cloud registration
that describes the intersecting volume of a sphere around the reference point
with the object. Rusu et al. [116] proposed the Persistent Point Feature Histogram
over all neighboring points of the reference point. They later improved the
computational performance [115] and included viewpoint-dependent statistics
[117]. Their histograms can then be used for finding point correspondences or
for surface classification. Chen and Bhanu [24] introduced a local surface patch
representation that is a histogram of shape index values vs. the angle between
normals. Johnson and Hebert [75] introduced spin images, which are histograms
of the surface created by rotating a half-plane around the normal of the reference
point and summing the intersecting surface. In [126], spin images are used as
an index into a database of objects with subsequent pose detection using a batch
RANSAC. Yamany and Farag [154] described surface signatures, which can be
seen as variant of the spin images where the cylindrical coordinates are replaced

75



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

by a combination of point-to-point distance and the angle between the points and
the normal vector. Ruiz-Correa et al. [113] defined a symbolic surface signature to
detect classes of similar objects. Taati and Greenspan [140] proposed a descriptor
with variable dimension, using an optimization approach to select the most
discriminative geometric features. Tombari et al. [144, 119] introduced the SHOT
descriptor, which combines histogram-based and signature-based descriptors.
The descriptor was also extended to include texture information [145]. Steder et
al. [130] proposed the normal aligned radial feature (NARF), a feature point detector
and descriptor that is based on discontinuities of range images. They explicitly
remove shadow corners and veil points, which are smoothing artifacts between
two depths. Their method, however, does not immediately generalize to generic
3D point clouds.

Somewhat different from the previous approaches, Bariya and Nishino [8]
proposed a scale-invariant local 3D shape descriptors. Note however that since
3D measurements are usually calibrated, there is usually no need to match over
multiple scales compared to 2D images. A corner detector is applied over multiple
scales, and the scale with the maximum response is used to define a local scale.
They report runtimes in the range of minutes.

A distinctive disadvantage of all of the afore mentioned local methods is that
they require dense 3D data that is not too noisy in order to extract a robust and
discriminative local descriptor. We found that in many practical applications,
the 3D information does not meet these criteria. The data is often too sparse
because of low-resolution sensors! or non-dense reconstruction methods (such as
stereo on surfaces with little texture). Other acquisition methods produce data
that is too noisy or suffers from quantization effects. Additionally, in order for
the local feature descriptors to have a chance to be discriminative, the surface
parts within the descriptor’s radius of influence must be different on different
parts of the object. This is often not the case for objects that have large amounts
of self-similarity or symmetry. Increasing the radius of influence increases the
discrimination capabilities of feature descriptors but makes the descriptors more
sensitive to missing surface parts and clutter.

The method proposed in this chapter does not have any of those requirements.
Instead, the data can be sparse and noisy. Also, while self-similarities of the
object’s surface make the proposed method slower, it does not affect the detection
rate. Also, we do not require a post-processing step such as RANSAC for
grouping the correspondences found by feature points.

Point-Pair Based Approaches Our method uses point pair features that describe
the relative position and orientation of two oriented points, i.e., two points with
normal vectors. Oriented points are sometimes called surflets [150], as they can be

ICommercial time-of-flight sensors have resolutions of only 200x200 pixels.

76



5.2 RELATED WORK

seen to describe a small, planar patch of the surface. The following is an overview
of other methods where such 3D point pairs were used.

A first group of methods uses histograms of point pairs as local or global
descriptor. Hetzel et al. [64] use local, viewpoint dependent histograms of normal
and curvature distributions to describe objects. They identify segmented objects
through histogram comparison between scene and database, allowing accurate
and fast identification of objects. Similar, but in a more global manner, Wahl et
al. [150] use global histograms of point pairs to identify segmented 3D shapes.
They also discretize the point pairs and compare the resulting histograms to
robustly identify objects in a few milliseconds. Compared to the propose method,
both approaches do not identify the object’s pose and require the object to be
segmented. Rusu et al. [116] use local histograms of point pairs to create robust,
invariant local surface descriptors. They also present a way for robustly extracting
a robust radius of influence, as well as a way for quickly approximating the local
point pair histogram. Their method is designed for the registration of large-scale
scenes, such as multiple scans of a room. Stein and Medioni [133] use point pairs
to build a repeatable local coordinate frame, and to build local surface descriptors
called splashes or super splashes. Additionally, they used pairs of splashes similar
to point pairs, using their distance and angles to measure spatial consistency
between scene and model splashes. Their approach is local and therefore suffers
from the same drawbacks that were mentioned above.

A second group of methods uses the fact that a matching point pair is in
general enough to establish a rigid transformation between two 3D point clouds.
The methods differ in how the point pairs are matched and how potential matches
are grouped. Stockman [136] uses matching sets of two planar patches and the
connecting edge, called SSE configuration, to generate pose hypotheses. A
subsequent pose clustering method collects the hypotheses. While this approach
matches the same features we do, it lacks the efficient local voting scheme and
the constant-time feature lookup. Matei et al. [88] measure point pairs similar to
us, by directly using angles and distances. However, they lack a fast indexing and
accessing scheme, as well as a corresponding voting scheme. Instead, random
point pair features from both the scene and the model are tested for similarity,
and matches are used to build transformation hypotheses. Winkelbach et al. [152]
match two point clouds by using a birthday attack on point pair features: Random
point pairs are selected iteratively from both clouds, and stored in a hash table.
On average, only 1.25n point pairs need to be selected until a matching pair is
found. Their approach is a particularly interesting application of the birthday
attack [6]. However, contrary to our approach, it is non-deterministic and might
be computationally expensive if many similar point pairs exist or if the surface
overlap is small. Contrary to this, our method has a deterministic runtime and
always returns — up to certain statistical effects of noise — the globally optimal
pose. Mian et al. [92] use two reference points to define a coordinate system

77



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

where a three-dimensional tensor is built by sampling the space and storing the
amount of surface intersecting each sample. The tensors are stored using a hash
table that allows an efficient lookup during the matching phase. The tensors
can be used not only for matching, but also for general point cloud registration.
Compared to our approach, their method is significantly slower and has a worse
detection rate. Skotheim et al. [128, 146] proposed a method where a single point
pair in the model is selected and searched for in the scene. Several criteria ensure
that the pair is discriminative (i.e., as unique as possible) and stable. However, the
selection of the point pair requires a manual step. The approach is also sensitive
to noise and occlusion of one of the two points of the point pair.

5.3 Rigid Object Detection in 3D

While the Hough transform was successfully applied to 2D detection problems,
its application to 3D was so far limited. This is mostly due to the different
properties of the feature and the parameter space in 3D compared to 2D, which
are both much larger and have a more complex geometry. The differences of the
two spaces are in particular:

1. The parameter space for rigid 3D transformations is much larger than in 2D.
Instead of 3 degrees of freedom — two for translation, one for rotation — it
contains 6 degrees of freedom. This makes a naive Hough transform orders
of magnitude more expensive, as the accumulator space grows exponentially
with the number of parameter dimensions. Note that even for 2D problems,
the accumulator space is sometimes deemed to be too large and methods
for its reduction were proposed [148].

2. The 3D parameter space is more complex, mostly because of the geometry
of SO(3), the manifold of 3D rotations (see Sec. 2.1). It is, in particular,
more expensive to compute the inverse kernel for some feature, i.e., the
list of all parameters that explain a feature, since it requires operations
with 3D rotations. It is also difficult to find a discretization of SE(3) into
approximately equally sized bins.

3. In 2D, features are ordered nicely in a grid array of pixels. This allows
efficient, constant-time lookup for a feature at a particular position. Contrary
to this, 3D point clouds are typically sparse, as they describe a 2D manifold
in 3D. Even though indexing data structures exist that speed up the lookup
of a feature at a particular position, they still require certain compromises
and are less efficient than in 2D.

However, 3D offers a distinctive advantage over 2D: In 2D images, the outline
or contour of an object — which defines its position — is not measured directly.
Instead, it must be extracted using some feature extraction step, such as a line

78



5.3 RiGcip OBjECT DETECTION IN 3D

or edge detector. Contrary to this, 3D sensors measure points on the physical
surface of the scene. Thus, no additional feature extraction is required to extract
the object’s boundaries, aiding the method’s robustness.

Overview This section introduces a local voting scheme that detects rigid objects
in 3D point clouds. It uses three building blocks, which are described in the
following sections.

1. Point pairs are the features the method is based upon. They are described
using a low-dimensional descriptor, and stored in a hash table for fast
retrieval.

2. Local parameters describe the position of a rigid object relative to some given
scene point. They are used to reduce the size of the parameter space.

3. A voting scheme that uses point pairs to recover the optimal local coordinates,
i.e., the rigid transformation that aligns the most model and scene points.

The voting scheme is embedded into a detection pipeline which is outlined
in Fig. 5.17 and Sec. 5.3.9. It might be useful to reference this figure while going
through the following sections, which discuss the different steps in more detail.

Notation In the following sections, we write M C R for the point cloud describ-
ing the model that is to be found, and S C R3 for the observed scene in which the
model is to be found. Points from those clouds are usually denoted as m € M
and s € S, respectively. Both clouds are oriented, i.e., there is a normal vector
n(s), n(m) assigned to each point.

5.3.1 3D Point Pair Features

Definition For two points m; and my with normals n; and np, we set d =
m; — my and define the point-pair feature F as

F(my, my, n(my),n(my)) = (||d||2, £(n1,d), £(ny,d), £(ny,ny)) (5.1)

where £(a,b) € [0, 7] denotes the angle between two vectors (see Sec. 2). F
is asymmetric w.r.t. exchanging the two points. Our feature avoids defining
a local coordinate frame, such as in [152]. Instead, angles and distance are
measured directly, thus minimizing the effect of noise in the normal directions
and point locations. To avoid notational clutter, we will often simply write
F(mj, my) = F(my, my, n(m;),n(my)), or even simply F if the two points are
clear from context. Fig. 5.1 illustrates the feature.

79



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

Figure 5.1: Point pair feature F of two oriented points m; and m; with normals n; and
ny. The component F; is the distance of the points, F, and F; are the angles between the
normal vectors and the difference vector d, and F; is the angle between the two normals.

Mirroring Note that F is invariant against mirroring the complete system, i.e.,
F(m1/m2/ n11n2) — P(_m]_/ —mj, —nj, _nZ) (52)

Since mirroring changes the handedness of the system, mirrored pairs of points
can in general not be transformed onto each other with a rigid transformation.
The feature can be extended such that it includes the handedness of the system
defined by nj, ny and d. For example, the two normal vectors can be used to
construct a unique direction v, and that direction can be compared with the
difference vector:

vV = nl X n2 (53)
s =sgn(v-d) (5.4)

Equivalently, one can use the sign of the determinant of the system matrix
s = sgn [nl np d] (5.5)
to define a feature F,, that is not mirror-invariant,
Fp(mj,my) = (||d||2, £(n1,d), £(ny,d), £(n1,ny),s) (5.6)

However, we found that in practice the additional computation costs for comput-
ing and using F,, are not worth the additional discriminativeness of the feature.
The number of point pairs that are mirrored w.r.t. each other is low enough to
not affect detection performance too much.

Properties and Discussion Point pair features have several unique and properties
that make them especially suited for the matching applications we have in mind.
First, F is fast to compute, as no extensive pre-processing (such as smoothing or
regular triangulation) of the point cloud is necessary. Note that the potentially
expensive step of computing normal vectors is required only for the subsampled
scene, not for the full scene point cloud. The features are invariant against rigid

80



5.3 RiGcip OBjECT DETECTION IN 3D

Hash table H
H(f) =
{(m1, m2),
(o 0] | (m3, m)
f:F(ml,mg) 3, 1114 ),
(Key to the (m3, me)}
hash table)

Figure 5.2: Illustration of the point pair database using a hash table. Three similar point
pairs on the model (left) are grouped into the same bin of the hash table (right).

transformations, making methods based on them invariant as well. We will show
in Sec. 5.3.2 that because of its small dimension, it is also fast to match. Except
for the case of mirrored configurations and for rare degenerated configurations?,
two matching point pairs can be used to construct a unique rigid transformation
that maps both points and their normal onto each other. Point pairs are also
far-reaching, non-local, thus allowing matching of points far (in the sense of the
target object’s size) away from each other.

Finally, with some exceptions, point pairs are quite discriminative, and a specific
point pair configuration often repeats only few times on an object. Exceptions to
this are objects that are (partially) symmetric. For example, point pairs repeat
rather often on large planar patches, on spheres and on cylindrical surfaces.
The last paragraph of the following section elaborates further on this matter. In
Sec. 7, we will modify the detection scheme presented in this chapter to deal with
symmetric primitive shapes.

5.3.2 Point Pair Matching

A crucial step of the proposed object detection methods is the matching of scene
point pairs to model point pairs: Given two points in the scene, we need to
quickly identify all pairs of points on the model that have a similar distance and
orientation. Depending on factors such as the dimension of the feature vector,
the size of the feature database and the expected noise levels, feature matching
can be a rather time-consuming step. Since the F has a small dimension, and
since the expected level of noise on the components of the feature is fixed, we
can use a direct hashing approach. Hashing is among the fastest methods for
feature lookup and allows us to find all matching model point pairs in constant
time, independent of the size of the feature database.

The distance and the angular components of F are sampled in steps of dgjst

2For example, if both normals and d are linearly dependent.

81



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

90
2.7 ! 80
2.4 L >
21 70 =
1.8
1.5 <
1.2
0.9
0.6
0.3 I!

20

0 1.1 21 32 43 54 6.4
Angular noise in °

w

v o
o o

Translational noise in %
o
w b
o o
Match Probab

Figure 5.3: Illustration of the binning problem. Gaussian noise with the shown standard
deviations (in % of the diameter of the model for translation, in degrees for the normal)
was added to both the point positions and the normal angles. The more noise the points
and the normals have, the less likely it is that a point pair is correctly matched against
the database. Note that the probability of a matching point pair is less than 100% even
for no noise, owing to the different sampling of scene and model. The sampling of the
feature was dgisr = 3% and dapgle = 12°.

and dangle = 27T/ Nangle, Tespectively

F= LHJ, b ) i ) b ez (5.7)
ddist dangle dangle dangle

The four non-negative integer values of F are used as index into a hash table
H that stores the list of all feature vectors whose discrete versions are identical.
Formally, it is a mapping

H:7Z* - M?, H(f) = {(m;,my) € M*: F(m;, m,) = f} (5.8)

Fig. 5.2 illustrates this lookup. The hash table H thus allows to find all model
point pairs similar to a given scene point pair in constant time.

Query Range Direct hashing is only reasonable for fixed-range nearest neighbor
queries. For point pairs, we can define that range based on the sampling of the
model and the expected noise of point positions and normal angles in the scene.
In practice, we set 1361 = 30 such that dypge = 12°. By default, dgist 1S set to
3% of the model’s diameter, however, that value can be adjusted based on sensor
noise.

Binning Problem Note that directly hashing the feature is among the fastest
methods for feature lookup, promising constant lookup times. The downside
of this method, however, is the binning problem: One or more components
of the feature vector might be close to the discretization boundary, and noise

82



5.3 RiGcip OBjECT DETECTION IN 3D

10"

Spher'e
Cylinder 5| i
100 Plane 4 _
iy Bunny 0,
% Pipe Joint g 4r 1
5107 E =
c o 3 b
— c
° - 5
2 102 ) E 5 2t .
o =
[5}
14 1+ 4
1078 \ ]
10-4 ! ! ! ! ) . QO X
100 10" 102 103 104 10° ¢

Number of feature bins

(a) (b)

Figure 5.4: (a) Distribution of the point pair features for different shapes. Shapes with
high amounts of self-similarity or symmetry, such as spheres, planes, or cylinders, tend
to have many identical features. Shapes with a more distinctive geometry, such as the
bunny, have more distributed point pair features. The distribution of the pipe joint,
which is built of several cylinders, is somewhere in between. (b) Timings when detecting
an object in a scene that contains only itself. The less uniform the distribution of the
feature list sizes are, the longer the matching takes.

can move the component — and thus the discretized feature — into a different,
incorrect bin. The binning problem is especially problematic with higher feature
dimensions, since the probability of being close to and potentially crossing a hash
cell boundary increases with each dimension.

We found that thanks to the small dimension of F, binning is not much of
a problem in the case of point pair features. Fig. 5.3 shows the probability that
a point pair is not matched correctly, based on the amount of translational and
rotational noise and using the discretization parameters mentioned above. Note
that, as shown later, our method is able to detect the object even if only 10% — 20%
of the features are matched correctly. Note also that strategies exist to mitigate the
binning problem, either during creation of the data structure, by adding model
point pairs to multiple neighboring bins of the database, or during the lookup
phase, by evaluating neighboring bins.

Distribution The length of each list H(f) depends on how many similar features
exist on the model’s surface. Fig. 5.4a illustrates the distribution of the lengths
of the lists H(f) for different object types. For asymmetric free-form objects,
such as the clamp and the bunny, list lengths show a long-tail distribution
with no outliers. For objects with high self-similarity, such as planes, cylinders,
and spheres, the distribution is biased towards a few large and many small lists.
Sec. 5.4.3 evaluates how the feature distribution affects the matching performance.

83



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

5.3.3 Local Coordinates

The unbounded and complex geometry of SE(3) makes it difficult to use a Hough
transform for recovering a rigid 3D transformation. This section describes how a
sub-manifold of SE(3), the local coordinates, can be used to reduce the dimension
and complexity of the parameter space. Thanks to this reduction, we will be able
to employ a Hough transform for detecting generic, free-form objects in 3D.

Idea The fundamental idea of local coordinates is to take one observed, oriented
3D point, the reference point s, € S and its normal n(s,), and to restrict oneself to
those rigid transformations that explain s,. In other words, we allow only those
rigid transformations for which s, is on the surface of the transformed model.
The set of those parameters can be seen as the inverse kernel of s,:

Kyl (sy) = {T € SE(3) : s, € TM} (5.9)

More intuitively, we allow the object to move into all positions for which s, is a
part of the object’s surface, and for which n(s;) is perpendicular to the object’s
surface.

Parametrization There is a natural parametrization for the set of local coordinates
w.r.t. s,. By definition, for each local coordinate, there exists some point m, € M
on the object’s surface that corresponds to s;. In other words, each Ty, € K_l(sr)
aligns s, and its normal with a model point m, and its normal:

Tm, =s, (5.10)
R(T)n(m,) = n(s,) 511)

We call m, the corresponding point of s, on the object’s surface. Aligning s,, m,,
and their normals leaves one degree of freedom: the object can still be rotated
around the normal vector of s,. We use another angle « to describe this rotation.

Summed up, every 3D transformation T € K~!(s,) can be parametrized by a
model point m, € M and a rotation angle a € [0;271[, or

T=T(m,a)eMx|0;277] (5.12)

From Local Parameters to Global Parameters At some point, we will need to
transform local parameters into a regular 3D transformation. Given some local
coordinates (m,, «), we decompose the transformation into three independent
steps, using an intermediate coordinate frame where we perform the rotation
around «:

T =To ! cRe()Thi (5.13)

84



5.3 RiGcip OBjECT DETECTION IN 3D

n(m,)

Ty my

Ts-asi Tsen(s,) = (I,O,O)T

Figure 5.5: Building a rigid transformation that aligns two point pairs, (m,, m;) and
(sr,si), using an intermediate coordinate frame. Ty, translates m, into the origin
and aligns the normal n(m,) with the x-axis. Ts_,c does the same for s, and n(s,),
respectively. The two point pairs thus meet in the intermediate coordinate frame, where
one degree of freedom remains, a rotation around the x-axis. The rotation R, («) aligns
the transformed Ty;_,cm; and Ts_.gS;.

Ry () is the rotation around the x-axis with angle a. Ty, € SE(3) is defined as
a transformation from model to intermediate coordinates that transforms m, into
the origin and its normal n(m,) onto the x-axis:

R(Tyc)n(m,) = (1,0,0)T (5.15)

Sec. 2.1.3 discusses how such a transformation is constructed. Similarly, Ts_,¢
does the same for s,:

TS%GS]’ =0 (5.16)
R(Ts_¢c)n(s,) = (1,0,0)T (5.17)

The transformation of an arbitrary model point m; onto its scene point s; is then
given as

s; = Tg L cRy(a) Ty, cmy (5.18)

Fig. 5.5 illustrates this transformation.

Discussion Local parameters have several properties that allow them to be used
in an efficient voting scheme. First, contrary to the translation component of
SE(3), they are bounded. Second, they are highly regular and avoid the complex
geometry of SO(3) by using only a 2D rotation, thus allowing a convenient regular
parametrization. Compared to SE(3), which covers six degrees of freedom, local
coordinates cover only three (two for the corresponding point, one for the rotation

85



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

P ~ Local parameter space
7
-
\
,,,,, - ,for i
o ‘\
/
/ \\\\
| _— RS
,,,,, - ~<
\\\ ~
//’\ =~< — \\\
/ S 'S ~
/ \ SQ // N \\
I \\ N ( AN \
N
\ NQ N N 1
1 ~o N N ]
e S /@—— ~< \ /
Mo TTTTT T T T o Na”
| - \ \\__‘/
| e \
I - \ \
I ’ \ \
1 / \ \
1 ! \ \
\ ! \ \
\ - . / !
\\\\\\ 1
\\\ 7 .;\\ / //\
__________ .
P2 N P
\\ -
S~ __ - -

Figure 5.6: Illustration of the local parameter space. () = SE(3) is the set of all rigid
transformations. Each scene point (such as pi, p2, p3) defines a manifold in Q) that
contains only those transformations that align the model M with the scene point. The
transformations where manifolds intersect (dots) align two or more scene points with
the model. We are interested in the transformation where the most manifolds intersect
(white dot).

angle). Finally, there is a straightforward way of sampling local parameters
regularly. Note that the local parametrization is data-driven in the sense that they
are defined by the oriented input scene points.

As a downside, the described parameters are local to a single reference point
in the scene, which is assumed to be on the object instance we search for. Since
this information is in general not available beforehand, we will need to use several
reference points throughout the scene, hoping that one or more lies on the target
object. This adds two degrees of freedom, since those reference points are picked
from a 2D manifold in 3D, the observed surface. In total, we will thus search
through five degrees of freedom, instead of six for the general SE(3), by implicitly
restricting our self to those transformations for which at least one transformed
model point lies on the observed surface.

5.3.4 Voting Scheme

Given a fixed reference point s, from the scene, we want to find the optimal local
coordinates for which the number of points in the scene that are aligned with the
model is maximized. Fig. 5.6 illustrates this. The optimization is done using a
voting scheme, similar to the Generalized Hough transform. Once the optimal
local coordinates are found, the global pose of the object can be recovered using
(5.13).

For the voting scheme, a two-dimensional accumulator array is created that

86



5.3 RiGcip OBjECT DETECTION IN 3D

Model Description Accumulator Space

Figure 5.7: Visualisation of different steps in the voting scheme: (1) The reference point
s, is paired with every other point s; and their point pair feature F is calculated. (2) F is
matched to the global model description, which returns a set of point pairs on the model
that have similar distance and orientation (3). For each point pair on the model matched
to the point pair in the scene, the local coordinate « is calculated by solving (5.18). (4)
After « is calculated, a vote is cast for the discretized local coordinate (m,, |&/7ngle | )-

represents the local coordinate space M x [0;27[. It has | M| rows, one for each
model point, and napgle cOlumns, which is the number of discretization steps of
the rotation angle a. This accumulator array represents the discrete space of local
coordinates for a fixed reference point.

For the actual voting, the reference point s, is paired with every other point
s; € S from the scene, and the model surface is searched for point pairs (m,, m;)
that have a similar distance and normal orientation as (s, s;). This search answers
the question of where on the model the pair of scene points (s, s;) could be, and
is performed using the pre-computed model description: The point pair feature
F(s;, s;) is calculated and used as key to the hash table H of the global model
description, which returns the set of similar point pairs on the model.

For each match (m,, m;), i.e., for every possible position of (s;,s;) on the
model surface, the rotation angle « is calculated by solving (5.18) for & (compare
Sec. 2.2.3). The transformation T (m,,«) then maps (m,, m;) to (s, s;), as shown
in Fig. 5.5. A vote is then cast for the discretized local coordinates (my, [&/7angle] )-
Fig. 5.7 and Fig. 5.8 outline the voting process.

After all points s; are processed, the peak in the accumulator array corresponds
to the optimal local coordinate, from which a global rigid movement can be
calculated. For stability reasons, all peaks that received a certain amount of votes
relative to the maximum peak are used as candidates in the subsequent processing.
The number of votes of each bin correlates to the number of scene points that lie
on the model if the model is transformed according to the corresponding local
coordinates of the bin. The vote count is, however, affected by noise and by the
binning problem of both the feature and the parameter discretization.

87



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

Input: Sampled model M
Sampled scene S
Reference point s, €S

Initialize accumulator array of size M Xigge with zeros

for s;€S:
Compute f= F(sy,s;)
Find L = H(f)

for (my,my) € L:
Compute &« using (5.18)
Vote for (m1/ L“/”angleJ)

Find the peak (m*,a*) in the accumulator array
Compute its rigid transformation T* using (5.13)

Output: T*

Figure 5.8: Basic voting scheme for a single reference point

5.3.5 Efficient Voting

Much of the time of the voting scheme itself is spent in the inner voting loop.
To reduce the computational costs of the detection algorithm, we will now show
how this inner voting loop can be implemented more efficiently. The challenges
for this is to solve (5.18) quickly for all matching point pairs and to use a voting
space representation that minimizes the work to be done per vote. While this
section is more technical, it provides important speed-ups.

Voting Angle Decomposition To speed up solving (5.18) for every point pair in
the list, we split a into two parts, & = a;;, — a5, such that a;, and as depend only
on the model and scene point pair, respectively. We split Ry (a) = Ryx(—as)Rx(am)
and use R, !'(—as) = Rx(as) to obtain

t= Rx(“s)TS%GSi =
= Re(am)Tv—cm; € Rx+Ryy, (5.19)

i.e., t lies on the half-plane defined by the x-axis and the non-negative part of the
y-axis. Fig. 5.9 illustrates this decomposition.

For each point pair in the model or in the scene, a unique t exists. The angle
between some v (for example, v = Ts_,gs;) and t can be computed without
explicitly computing t, by projecting v into the y-z-plane and computing the

88



5.3 RiGcip OBjECT DETECTION IN 3D

Figure 5.9: Decomposition of the rotation angle a. After transforming a point pair (sr,8i)
into intermediate coordinates, t is the unique vector obtained by rotating Ts_,gs; around
the x-axis into the half-plane Rx + Ry. The vector t is uniquely defined, and the rotation
angle a; can be computed independently from other point pairs. For rotating one point
pair onto another, their rotations «; and «,, are computed. Then, & = a5 — .

angle to the positive y-axis using the atan2 function (see also Sec. 2.2.3):

v =v—ei(e-V)
w = atan2 (v, v;) (5.20)

Because t is independent of the scene point pair, a;, can be precalculated for
every model point pair in the offline phase and is stored in the model description.
as needs to be calculated only once for every scene point pair (sr,8;), and the
final angle « is a simple difference of the two values. Note that the difference
might be out of the range of [0;277] thus needs to be normalized by computing
the modulo w.r.t. napgle.

Fig. 5.10 illustrates the offline stage and the voting for a single reference point.

Angle Pre-Discretization Another speed-up can be obtained by removing both
the modulo operation and the integer casting from the inner voting loop. Note
that both modulo and integer casting are among the slowest operations on CPUs
that can additionally often not be pipelined.

To remove the integer casting from the inner voting loop, we cast the two
angles a; and «,, independently before the voting loop, and only add the two
casted numbers:

am - “s
g = | ——
Mangle
x 14
= ay = |- : (5.21)
i Mangle Mangle

89



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

// Offline
Input: Sampled model M

for m;,my € M do:
Compute &, for (mp,mp) using (5.19), (5.20)
Store (mq,my,a,) in list H(F(mj,my))

Output: Model description H

// Online

Input: Model description H
Sampled scene S

Reference point s, €S

Initialize accumulator array

for s; €S:
Compute f= F(sr, si)
Find L = H(f)

Compute a; for (sr,s;)
for (my,mp,ay) € L:
&=ty — s
Sample and normalize: aj = [a/Nangle] mMod Nangle

Vote for (mq,ay)

Find the peak (m*,a*) in the accumulator array
Compute its rigid transformation T* using (5.13)

Output: T*

Figure 5.10: The offline and online phase, optimized by decomposing the local rotation
angle « into a model and a scene-dependent component.

The cast of &, can be performed in the offline stage, while the cast of a5 is
performed once per scene point pair. Note that we only save casts if the voting
list L is larger than one. Note also that that (5.21) introduces the chance of an
off-by-one error.> However, we found that that computational savings are worth
this inaccuracy, and smoothing of the Hough space in angular direction mitigates
this effect (see Sec. 5.3.6).

To remove the modulo operation from the voting loop, we use the fact that we
know strict limits of the computed angle. Since 0 < as, &, < 271, we know that

3For example, |1.6 +1.6] = [3.2] = 3, but [1.6] + [1.6] = 1+ 1 = 2. The probability for such an error is
0.5.

90



5.3 RiGcip OBjECT DETECTION IN 3D

0 < ag4,p,4 < Nangle and therefore

- nangle < Kppd — Ksd < nangle
=0< nangle + Kpd — Kg d < 2nangle (5'22)

Instead of normalizing a; inside the voting loop, we introduce an ambiguity
in the angular component of the voting space by re-sizing the voting space to
M x{0,1,2,... 2n3ng1e — 1}.* The votes are then cast for Nangle + &m,d — &s,q inside
the voting loop, and the normalization is performed after voting by aggregating
the votes of the cells (m, a;) and (m, &g + Mangle)-

The outer voting loop then reads

for s; €S:
Compute f= f?(sr,si)
Find L= H(f)

Compute as for (s, s;)
Ag g = L“S/nanglej
for (my,my,a, ) €L:
Vote for (my,Mangle + &ma — Xs,q)

Pre-Compute Index As a final implementation speedup, we can pre-compute the
linearized voting index in the offline phase. The voting space V is an array of size
Nangle| M|, OF 214ng1| M| if the above angle pre-discretization is used. The array is
linearized in memory in an angle-major order

V = [(mp,0), (myp,1),..., (m0/2nangle —1),

(mll 0)/ (mll 1)/ ey (mlrznangle - 1)’

(mypr1—1,0), (mypg -1, 1), - - o, (mypg—1, 2nangle — 1))] (5.23)
A vote for the local coordinates (m, a ) is thus cast to the linearized coordinates
idx(m, ag) = 2nanglernidx +ay (5.24)

where myy, is the index of m in M. Thanks to the above decomposition of «; and
the pre-discretization of the angles, we can decompose the linear index as

idx(m, “d) = 2nanglen‘lidx + Mangle + Kppd — Kgd
= (znanglemidx + ‘Xm,d) + (nangle - ‘Xs,d)
= idx(m, ‘Xm,d) + (”angle - ‘Xs,d) (5.25)

4Note that the angular component could start at 1 according to (5.22). However, analysis of the voting
space is more elegant if we simply double the angular component.

91



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

// Offline
Input: Sampled model M

for m;,my € M do:
Compute &, for (mp,mp) using (5.19), (5.20)
X, d = I_“m/nangleJ
idxy = 2nanglelnl,idx + X, d
Store idxy in Hy(F(my,mjy))

Output: Model description H

Figure 5.11: The offline phase of the voting scheme after including several optimizations.

Note that idx(m, «,, ;) is scene-independent. We can thus pre-compute the
linearized indices for each list L = H(f) in the model generation phase:

Ly = {idx(m, ayx) : (m, &) € L} (5.26)

The pre-linearized lists are stored in the hash table Hj. This leads to the voting
loop

Lookup Ly = Hy(F(sy,s;))
for idx e L; do:
V]idx + nangle — &s4]++

By adjusting the pointer to the voting space before the loop, we finally arrive at
the elegant and tight voting loop

Lookup L; = Hy(F(sy,s;))
Vlocal =V+ ”angle iy
for idx € L; do:

Viocal [idx} ++

Fig. 5.11 summarizes the offline and Fig. 5.12 online phase of the voting scheme
using the above modifications.

Duplicate Elimination From each list L; of pre-computed voting indices, we
remove duplicates (thus effectively making the list a set). This aids two things:
First, it avoids that over-sampling the original model leads to larger lists. Instead,
even if two or more point pairs lead to the same feature and the same voting space
index, only a single one is retained. Because of this, the lists will converge for a
infinitely densely sampled model. It is thus impossible to overtrain the model.

92



5.3 RiGcip OBjECT DETECTION IN 3D

// Online

Input: Model description H
Sampled scene S
Reference point s, €5

Initialize accumulator array: V <« 0‘M| Dangle
for s;€8S:

Compute f= F(sy,s;)

Find Ld = Hd(f)

Compute a; for (sr,s;)

Xs g = L“S /nangleJ

Vlocal =V+ nangle — Qs q

for idx € L; do:

Vlocal [idx} ++

// Aggregate ambiguous votes
for me M, a€{0,1,... 141 — 1} do:
VI [(m, )] = V{(m,&)] + V[(m, & + ntangle )]

Find the peak (m*a*) in the accumulator array
Compute its rigid transformation T* using (5.13)

Output: T*

Figure 5.12: The online phase of the voting scheme after including several optimizations.
Note the tight inner voting loop which is stripped of all expensive operations.

Instead, only the sampling of the feature and of the Hough space influences the
list lengths.

Second, removing duplicates allows a direct interpretation of the voting result:
The number of votes for a pose is the number of scene points that would lie on
the object, if transformed using that pose (times a factor for the probability of
matching point pairs correctly).

5.3.6 Analysis of the Voting Space

Binning Problem One concern when using the Hough transform is that the
sampling of the parameter space leads to non-smooth distributions of votes:
A vote might fall close to the borders between two samples, and noise in the
observed features makes it fall into either one of both. This effect is sometimes
called the binning problem. More noise in the observed features intensifies this
effect, since that noise is often transformed into noise in the recovered parameter.
The effect also increases with the number of dimensions of the Hough space, since
the probability increases that a vote lies close to the boundary of a parameter

93



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

Input: Voting Space V
Gaussian smoothing o
Threshold &,

for v in V do:
Vneigh(v) — {}
for u in V do:
Compute w,, using (5.28)
if wyy > 6y do:
Vneigh(v) — Vneigh(v) U {u}

Output: Neighborhoods Vpejgn and weights w

Figure 5.13: Computation of the neighborhoods within the voting space. Each entry
in the voting space corresponds to a pose, and this algorithm computes the similarity
between those poses.

space sample.

The binning problem leads to several undesired effects: First, the peak might
have fewer votes than it should, since some votes are cast to neighboring bins.
The votes are effectively smoothed over a neighborhood of bins. Second, local
maxima might arise around the global maximum that should actually be part of
the global maximum. Third, it forces a trade-off regarding the sampling size of
the parameter space, i.e., the sizes of the bins: Larger bins reduce the effect of
the binning problem, while smaller bins allow for a more precise recovery of the
parameters.

Three basic strategies can be employed to counter this effect:

1. Rely on statistics (in other words, simply do nothing, but a lot of it).
If enough votes are cast, the law of large numbers will eventually lead
to a smoothing of the votes such that the correct bin receives the most
votes. However, this technique can be rather unreliable, is potentially more
expensive than other techniques — in particular if the peak in the voting
space would be available with fewer votes, and additional votes are cast only
to perform this smoothing — and does not solve the problem of neighboring
local maxima.

2. Smooth while voting. Multiple, potentially weighted, votes can be cast to
the surrounding bins: By casting votes using a small smoothing kernel, the
binning problem can be avoided. This technique makes the voting step more
expensive, since multiple votes must be cast instead of just one. Additionally,
it might require continuous vote counters instead of integer-based counters.

94



5.3 RiGcip OBjECT DETECTION IN 3D

The size of the smoothing kernel can be adjusted based on the expected
noise in the observed features.

3. Smooth after voting. The parameter space can be smoothed after voting,
using some smoothing kernel that incorporates the similarity between neigh-
boring parameters. The size of the smoothing kernel can again be adjusted
based on the noise in the observations. This technique makes the peak
extraction more expensive.

In general both the smooth-while-voting and smooth-after-voting are equiva-
lent on a functional level: If the same smoothing kernel is used, both techniques
will result in the same number of votes per bin. In terms of performance, smooth-
while-voting incurs costs per vote, while smooth-after-voting incurs costs per bin.
Which one is faster thus depends on the number of expected votes vs. the size
of the voting space, something that is difficult to estimate beforehand, since it
might be scene-dependent.

Our Approach In our approach, we use a mixture of the statistical and the
smooth-after-voting technique that avoids most of the performance costs while
still avoiding the binning problem. We assume that after voting, the dominant
peaks will have enough votes to be detectable in a non-smoothed voting space. We
then smooth the voting space only in a small neighborhood around those detected
maxima. This combines the advantage of speed of the statistical approach with
the accuracy of the smoothing approaches.

Smoothing Kernel In order to smooth the voting space, we need to define some
smoothing kernel. While our parameter space has a certain regularity in the
dimension of the rotation angle, it is more complex in the dimension of the
corresponding model point. We compare the similarity of parameters based
on the similarity of their corresponding rigid 3D transformations, based on the
single-valued, model-dependent 111 oy metric (see Sec. 2.2.4, (2.37)).

Let T, € SE(3) be the corresponding 3D transformation of a bin v € V of
the voting space, and let ¢(v) be the number of received votes, we define the
smoothed variant é(v) as

¢(v) = % Y wypc(u)

ueVv
1
= - Z w(mM1 norm (Tu, Tp) )c(u) (5.27)
ayev
where a = ), cy wy,» is a normalization factor. Several smoothing kernels w are
possible, we use a classic Gaussian kernel

1 _ a2
ZU(X) = e 202 (5.28)

95



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

Since the parameter to the Gaussian function, 111 norm, is normalized, we can use
a fixed, model-independent value of ¢ = 0.03 (i.e., 3% of the model’s diameter).

Precomputing Weights Note that the smoothing weights w,, , can be computed
offline, since they are fixed for a given model. The weights are also close to zero
for most combinations of u, v, such that we can limit the sum in (5.27) to a few
neighbors only. This allows for an efficient online smoothing that evaluates

e(o) == Y. wuec(u) (5.29)

a
ue Vneigh (U)

where Vieign (v) is the (small) set of neighboring voting space cells of v,
Vheigh (V) = {w € V 1wy > 5y} (5.30)

In practice, we set §, = 0.01. As example, for a model sampled with 3% of its
diameter, an angular sampling of the Hough space in steps of 12°, and ¢ = 0.03,
average neighborhood sizes are ‘Vneigh| ~ 5. Fig. 5.13 summarizes the offline
phase for computing the neighborhoods.

Sub-Bin-Precise Peak Extraction As mentioned above, the bin sizes of the voting
space are selected as a trade-of between accuracy and performance: Smaller
bins are more accurate, while larger bins are typically faster and less prone to
noise. Instead of making the bins smaller, accuracy can also be improved by
extracting the peak with sub-bin-precision (see, for example, [148]): After finding
the maximum of the smoothed voting space,

v* = argmax?{(v) (5.31)

veV

we can use the votes of neighboring bins to estimate the error due to binning.
Intuitively, if the bins in one direction (in SE(3)) have significantly more votes
than in the other direction, the real maximum lies more in that direction. Formally,
we can fit a Gaussian or a quadratic function into the local neighborhood of the
peak, and use the maximum of that function as the peak position. The function
to fit depends on the expected spread function of the votes, which is difficult to
obtain.

In our case of SE(3), however, fitting a quadratic (or Gaussian) function might
be difficult, since the pose samples surrounding the peak all lie on the manifold
determined by the local coordinates (compare Sec. 5.3.3). The fitted function is
thus also valid only on that manifold. We thus use a different approach: Instead
of using a function fit, we compute the weighted average v over the neighboring
poses (see, for example, [95, 59]):

To== Y,  wily (5.32)

a
ueVr\eigh (7))

96



5.3 RiGcip OBjECT DETECTION IN 3D

Input: Set of poses and scores (T,s) € P C SE(3) x Rt
Metric d, Clustering threshold dyx
Minimum score s,

Pt ={}

while maxgegs > s, do:
Find peak pose: p* = (T s")=argmaxgcps
Find surrounding cluster: N(p*)={p € P:d(p,p*) < dmax}
Remove cluster from remaining set: P« P\ N(p*)
Compute weighted mean: W(N(p*))
Add to output set: P* <« P*UW(N(p*))

Output: Set of smoothed, filtered poses P*

Figure 5.14: Algorithm for pose clustering. We use the 111 norm-metric from Sec. 2.2.4 as
pose comparison metric d.

We compared the accuracy of the rigid transformations obtained with and
without sub-bin precision on a synthetic scene with known ground truth. Over-
all, the sub-bin precise peak extraction improved the accuracy of the extracted
transformation by around 0.4% of the model’s diameter w.r.t. the m; jorm metric.

5.3.7 Pose Clustering

The above local voting scheme identifies the object pose if the reference point lies
on the surface of the object. Multiple reference points are necessary to ensure that
at least one of them lies on the target object instance. As shown in the previous
section, each reference point returns a set of possible object poses that correspond
to peaks in its accumulator array. The retrieved poses will only approximate
the correct pose owing to different sampling rates of the scene and the model
and the sampling of the rotation in the local coordinates. We now introduce an
additional step that filters out incorrect poses, removes duplicates and increases
the accuracy of the poses.

To this end, the poses computed in the voting step are clustered in a greedy
fashion. We first find the pose with the highest voting score, and then assign all
other poses that are close w.r.t. 111 norm (see Sec. 2.2.4) to its cluster. The score
of a cluster is the maximum of the scores of the contained poses. This step is
effectively a non-maximum-suppression in the space of rigid transformations.

After finding the cluster with the maximum score, the resulting pose is
calculated by computing the weighted average of the poses contained in the
cluster, thereby increasing the accuracy of the pose. Since multiple instances of
the object can be in the scene, several clusters can be returned by the method by

97



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

‘e
FadieN

> “

o @
o @
© 0 0 0 0O 0O 0O O O O . . . © 0 0 00O 0O 0 OO0
(a)
& ° e
.0 e
o .
[ (]
[ (]
) ) o o [} o o o o
(b)

Figure 5.15: (a) Illustration of the scoring function. Imagine the scene (small points)
contains a ball on a plane, and is seen from above. The large points are points on the
registered model. For each scene point, we find the closest model point and mark it as
visible (green). All other model points are invisible (red). (b) Illustration of the sampling
problem when computing the score. If the scene is less dense than the model, some
model points will incorrectly be marked as invisible, even though they are visible.

removing all poses from one cluster before continuing. Pose clustering increases
the stability of the algorithm by removing isolated poses with low scores, and the
averaging step increases the accuracy of the final pose. Fig. 5.14 illustrates the
greedy clustering process.

5.3.8 Efficient Scoring

For many applications, it is important to have some knowledge about the quality,
or a score, of the detected object instances. For example, robots can often pick up
only the topmost object of a pile of objects, and would want to select the object
that is most visible. Also, if no instance of the object is present in the scene, the
proposed method might still return a false positive by aligning a small part of the
object with background clutter. A robust score can help to distinguish between
such false positives and true positive matches.

98



5.3 RiGcip OBjECT DETECTION IN 3D

Input: Sampled model point cloud M
Pre—computed nearest neighbor structure NN for M
Scene point cloud S
Distance threshold e
Object pose T

for me M set presentim] < FALSE
for se S do:

m + NN(T~1s, M)

if [s—m|<e

present[m] <— TRUE

Npresent = [{m € M : present[m| = TRUE}|
5= ”present/|M|

Output: Normalized score s

Figure 5.16: Algorithm for computing the normalized score that represents the ratio of
visible scene surface.

A good score should enable two things. First, it should allow to order the list
of detected instances, and as such provide a relative measurement for comparing
detection results. Second, it should provide an absolute measurement that helps
distinguish false positives from true positives.

In terms of usability, scores should be normalized, usually to the range [0, 1]
where 0 represents a particularly bad result and 1 a very good result. This allows
users to set score thresholds that are independent of model and scene. It also
helps if scores have some simple, physical interpretation, as this allows users
to get an intuition of the quality of the results. Finally, scores should be robust
against minor distortions such as small amounts of noise or a different sampling
of the scene’s surface.

Related Work The problem of scoring the results can also be seen to be a hy-
pothesis verification. Relatively little work has been done in this regard [2]. Most
recently, Aldoma et al. [2] proposed a global approach for hypothesis verification
that works in heavily cluttered environments and shows remarkably good results
on standard datasets. However, they report verification times of ~ 4s per scene,
which is too long for many practical applications. Contrary to their approach, our
scoring or verification is local in nature, works significantly faster and requires
only few parameters, which can usually be left unadjusted.

99



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

Voting Score A first and straightforward score would be the number of votes
that an instance received. Since this score is a natural by-product of the proposed
method, it comes without additional costs. It also has a physical interpretation,
namely that it represents the number of scene points that would lie on the object
instance.

However, several reasons speak against the number of votes as score. First,
it is non-normalized and changes with several parameters (such as the scene
sampling, feature sampling, and the number of reference points). Second, and
more importantly, it is not robust enough, as it is a statistical measurement. Each
vote is cast to the correct bin only with a certain probability, which is affected
by noise, feature sampling, and voting space sampling (compare Fig. 5.3). We
performed experiments that show that a simple rigid transformation of the scene
can change the number of votes for a pose by up to 25%.

Visible Surface Ratio A more robust score that is the ratio of the visible object
surface vs. the total object surface. For example, if half of the object is visible,
the score should be 0.5. This score is normalized, has an intuitive interpretation,
and is — if computed after the pose refinement — highly robust. It does, however,
require a parameter that defines how far a scene point may be away from the
object’s surface to still be interpreted to be “on” the surface. This parameter
should be in the range of the expected noise of the measured points.

To efficiently compute this score, we sample the model and use the nearest
neighbor structure from Sec. 3 to find the closest model point for each scene point.
Each sampled model point is classified as present if some scene point is close to
it, and as absent if not. The ratio of present to total scene point defines the score.
Fig. 5.16 outlines the algorithm and Fig. 5.15a illustrates the scoring process.

Note that an assumption of this scoring is that the scene points are more dense
than the sampled model points. If this assumption is not met — for example, if
the sensor has a very low resolution, or the object instance is very far from the
sensor —, the scoring will produce an incorrectly low score, since some of the
actually visible model points will be classified as invisible (see Fig. 5.15b).

In practice, when using a single 3D sensor, only one side an object instance
is visible. If a CAD model is used that contains all sides of an object, the score
is often below 0.5 even for perfect matches. Note that if the calibration of the
original sensor is available, the visibility of the object given the found position
can be used to compute the score as ratio of ratio of the visible object surface vs.
the potentially visible object surface can be computed and used as score. We did
not do this for two reasons: First, the method is designed to be independent of
the originally used sensor and works even if the calibration data is not available.
And second, it introduces a bias towards poses where only a small part of the
object is potentially visible (such as seeing a long cylinder exactly from top or
bottom, such that only the cap is visible). Of course, the score we use has a bias

100



5.3 RiGcip OBjECT DETECTION IN 3D

Model Scene
sample sample
M S
Hy A
compute ——— > voting
point pairs :

MynN :
———> sparse ICP

l

clustering

compute _|
voxel hash :

—é—»dense ICP<—

score

<------

Results
Offline Online

Figure 5.17: The different steps of the detection pipeline. In the offline phase (left), the
model is sampled twice: Once for the computation of the point pair features, and once for
the nearest neighbor data structure. In the online phase (right), the scene is sampled and
the local voting is used to find pose candidates. The candidates are first approximately
refined, using the sampled scene. The clustering step effectively filters out the best poses
and performs non-maximum suppression. The remaining poses are then refined more
accurately, using the complete scene. Finally, the score is computed.

towards

5.3.9 Detection Pipeline

To complete the description of the proposed method, Fig. 5.17 outlines the
complete detection pipeline. In the following, each step is briefly summarized.
Offline Phase

* sampling: The model is first sampled twice, once for the computation of
the point pair features, and once for the creation of the nearest neighbor
lookup database (Sec. 2.3)

* point pair computation: All point pairs are formed, and their linearized
voting indices are stored in the hash table H,, using the sampled point pair

101



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

teatures as key (Sec. 5.3.2 and Sec. 5.3.5)

* voxel hash computation: The voxel-hash based nearest neighbor structure
is created (Sec. 3)

Online Phase

* sampling: The scene is first sampled to avoid bias towards more densely
sampled parts of the scene, as well as for performance reasons

* voting: Reference points are sampled uniformly from the scene, and the
voting in the corresponding local parameter spaces is used to find pose
candidates (Sec. 5.3.4)

* sparse ICP: A rapid ICP is performed, using the sparsely sampled scene
(Sec. 4, especially Sec. 4.5 for a motivation of the dense and sparse ICP)

* clustering: The poses are clustered in pose space. This step selects the
locally best poses and effectively performs a non-maximum-suppression
(Sec. 5.3.7)

* dense ICP: The selected poses are accurately refined using all available
scene points.

* scoring: A score is computed for each pose that represents the quality of
the pose. The poses are sorted based on the score (Sec. 5.3.8)

5.3.10 Complexity Analysis

This section discusses the theoretical computational costs of the proposed voting
scheme. The local coordinates (m;, a) describe three degrees of freedom: two for
m,, which is sampled from the 2D surface of the model M, and one for the angle
«. The reference points are sampled from the 3D surface of the scene, which is a
2D manifold, therefore representing two degrees of freedom. Overall, the voting
thus examines five degrees of freedom, compared to six degrees of freedom for
a generic rigid transformation in SE(3). The remaining degree of freedom is
reduced by the condition that the model must be stuck to the scene surface, thus
avoiding positions where the model would float in empty space.

Since we sample the scene uniformly, for each reference point, the number
of neighboring points that are closer to the reference point than the diameter of
the object is bounded. The lengths of the voting lists, |H(f)|, are also bounded.
The costs for voting for a particular reference point is thus constant, O(1). Since
the reference points are also sampled uniformly from the scene, and since the
sampling rates are based on the diameter of the model, the total runtime is

o ((22mis)) 53

102



5.4 EXPERIMENTS

In other words, the runtime of the voting scheme is linear in the size of the scene
compared to the size of the model. Note, however, that the constant factor is
dominated by the list lengths |H(f)|, as shown in Sec. 5.4.3.

5.4 Experiments

We evaluated our method against a large number of synthetic and real datasets
and tested the performance, efficiency, and parameter dependence of the algo-
rithm.

For all experiments, the feature space was sampled by setting dgis; to be
relative to the model diameter dg;; = 7; diam(M). Unless stated otherwise, the
sampling rate 7; was set to 0.05. This makes the parameter independent from the
model size. The normal orientation was sampled with 7,61 = 30. This allows a
variation of the normal orientation with respect to the correct normal orientation
of up to 12°. Both the model and the scene point clouds were subsampled such
that all points have a minimum distance of dj;s;. One fifth of the points in the
subsampled scene were used as reference points. After resampling the point
cloud, the normals were recalculated by fitting a plane into the neighborhood
of each point. This step ensures that the normals correspond to the sampling
level and avoids problems with fine details, such as wrinkles on the surface. In
other words, it avoids aliasing problems with the normals. Both the scene and
the model were sampled in the same way. The same parameters were used for all
experiments except where noted otherwise.

We will show that our algorithm has a superior performance and allows an
easy trade-off between speed and recognition rate. The algorithm was imple-
mented in C and parallelized. The benchmarks were run on a 3.20 GHz Intel Core
i5-4570 with 16 GB RAM. All given timings measure the whole matching process
including the scene subsampling, normal calculation, voting, and pose clustering.
The individual experiments note whether the refinement and scoring steps were
included in the timings. For the construction of the global model description, all
point pairs in the subsampled model cloud were used. The construction took at
most several seconds for each model.

5.4.1 Synthetic Data

Voting We first evaluated the proposed voting scheme against a large set of syn-
thetically generated three-dimensional scenes. Synthetic data has the advantage
that we know the exact ground truth and have tight control over noise, clutter
and occlusion. We selected the four models shown in Fig. 5.18, the T-Rex, the
Chef, the Bunny and the Clamp, to generate the synthetic scenes. The chosen
models demonstrate different geometries.

103



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

Figure 5.18: Models used in the experiments. Top row: The five objects from the scenes
of Mian et al. [93, 92]. Note that the rhino was excluded from the comparisons, as in
the original paper. Bottom row from left to right: The Clamp and the Cross Shaft from
MVTec, and the Stanford Bunny from [124].

In the first set of experiments, scenes containing only a single object were
used, and the performance with respect to noise was measured. Each of the four
afore-mentioned objects was rendered from 50 different directions. This results in
200 point clouds, which were then corrupted by additive Gaussian noise with a
standard derivation given relative to the object’s diameter. This was done prior to
the subsampling step. We were interested in the recognition rate, i.e., the number
of scenes where the object was successfully found. An object is defined to be
detected if the error of the resulting pose relative to the ground truth is smaller
then some predefined threshold. In our experiments the threshold was set as
M1 norm < 0.1 (see (2.37)). Fig. 5.19 shows an example scene and the recognition
rates.

In a second set of experiments, 50 artificial scenes were rendered, each contain-
ing from four to nine randomly placed objects from the four objects used above.
The scenes thus show multiple instances, clutter, and occlusion. In total, 347
objects were placed in 50 scenes. We measured the performance of our algorithm
with respect to occlusions and in case of real data also with respect to clutter.
The definition of [75] for occlusion and [92] for clutter, both defined per object
instance, were used:

model surface area in the scene

lsion — 1 5.34
occlusion total model surface area ' 639

model surface area in the scene
clutter =1 — . (5.35)
total surface area of scene

The average number of points in the subsampled scenes is |S| ~ 1690. We ran
out algorithm three times, using 1/5th, 1/10th and 1/40th of the scene points
as reference points. Fig. 5.20 shows an example scene and the recognition rates.
Both the recognition rate and the execution time depend on the number of used

104



5.4 EXPERIMENTS

0.8 - 1

Detection rate

0.4 - 1

0.2 1

0 1 2 3 4 5 6 7 8 9
Gaussian noise 0

(b)

(a)

Figure 5.19: Results for the artificial scenes with a single object. (a) A point cloud with
additive Gaussian noise added to every point (¢ = 5% of the model diameter). The pose
of the bunny was recovered in ~ 5ms. (b) Detection rate for different levels of Gaussian
noise, given as standard deviation in percent of the object’s diameter. For each noise
level, the detection rate is averaged over 300 scenes.

Recognition rate

19 ms/object (|S|/5) —— i
14 ms/object (|S|/10)
11 ms/object (|S|/40) —*—

0.2

0.7 0.75 0.8 0.85 0.9
Occlusion

(b)

Figure 5.20: (a) One of the 50 synthetic scenes with the detected objects overlayed
as colored wireframe. The poses are the result of the voting only, without any pose
refinement such as ICP. (b) Recognition rate against occlusion for the synthetic scenes
with multiple objects. The number of reference points was |S|/5, |S|/10 and |S|/40
respectively.

105



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

100 100
0.94 0.94
0.89 0.88
80 80
0.83 | -+ ° 0.81 °
© ©
g 077 | + & 0 & 5 05| & g0 &
@ 0.72 4 I = = S @ 069 < s
g 066 + T T - 40 5 g oes + + 40 g
© o061 + + + + § © o057| + + + g
055 | + i + 4 20 05| + + 3 0
049 | + + + + 0.44 | + + +
044 | + & 4 & o 038 | + 4 4 o
0 0.01 0.02 0.3 0.04 0 0.02 0.03 0.04
Noise Noise
(a) Pipe Joint (b) Bunny
100
0.94
0.89
80
0.83 °
c 0.77 ©
60 <
2 om2| + T c
2 g
g 066 & + 40 9
© 06| 4 4 + g
054 | + + s + 0
0.49 | + 4+ 4+ 4
043 | + 4 4 4 o
0 0.01 0.02 0.03 0.04

(c) Connection Rod

Figure 5.21: Effect of occlusion and noise on the detection pipeline. Several 10.000 scenes
were rendered, each containing multiple, partially occluded, instances of all three objects,
as well as Gaussian noise. The resulting detection rates are plotted w.r.t. the relative noise
0.1 as well as the occlusion. Note that the bottom side of the bunny is not fully modeled,
allowing for occlusions of less than 50%.

1 t t t t T T 1 t t t
Bunny ——
0.8 [ b 0.8 [
i) i)
© ©
X 06 | E X 06 [
=1 c
o k<]
304 g 304 Ff
) )
o [a}
0.2 b 0.2 f
0 1 1 1 1 1 1 0 1 1 1 1 1 1
0 01 02 03 04 05 06 0.7 08 09 1 0 20 40 60 80 100 120 140
Occlusion Angle
(a) (b)

Figure 5.22: Results where the object was rotated w.r.t. the reference model. The reference
model was created by rendering the object in a random orientation, using only the then
visible points. For detection, the object was again put into random orientations and
rendered. We measured how much of the reference model was still visible (a) and by
how much the object was rotated w.r.t. its reference pose ((b), excluding in-plane rotation)
vs. the detection rate. Overall, Occlusions up to 50% and rotations up to ~ 80° are are
handled perfectly.

106



5.4 EXPERIMENTS

reference points. For |S|/5 reference points, 89.3% of all objects were correctly
detected. The missed objects are mostly the highly occluded ones: 98% of all
objects with more than 15% of visible surface, i.e., less than 85% occlusion, were
found. For |S|/40 reference points, 77.2% of all objects and 89.1% of objects more
than 15% visible were found. However, the latter setup was roughly twice as fast.

From the experiments it is obvious that the number of reference points is a
tradeoff between speed and performance: A significantly faster matching can be
achieved at the price of not detecting ill-conditioned objects with high occlusion.

Noise vs. Occlusion Another test was performed to evaluate the effects of simul-
taneous occlusion and Gaussian noise on the detection performance. Fig. 5.21
shows the cumulative results. Overall, the detection rate stays high for moderate
occlusions and noise. The runtime per detected object was around 100ms. As
explained above, a denser sampling would have led to a more accurate detection,
at the cost of runtime. Note also that in practice, some of the Gaussian noise
could usually be filtered prior to detection by smoothing the input data. The
noise levels shown in the experiments are thus rather extreme and can usually be
avoided in real-world setups.

Rotation of Model vs. Scene An additional set of synthetic tests evaluated by
how much an object can be rotated and still be detected. We first rendered an
object from a random direction and created a detection model from the rendered
scene. The model was then rendered from different random directions (test
scenes) and detected using that model. We first measured the detection rate w.r.t.
the model’s rotation angle between model and scene. Only the out-of-plane angel
is measured, i.e., the in-plane rotation of the object around the camera’s z-axis
was ignored, since the method is invariant against such rotation. A second test
measured the detection rate w.r.t. how much of the surface in the model scene
was still visible in the test scene.

Fig. 5.22 shows the corresponding results, aggregated over 10.000 scenes.
Overall, occlusions up to 50% and rotations up to ~ 80° were handled perfectly.

5.4.2 Real Data

We now present the results on real data. We first present quantitative evaluations
and comparisons with previous works and then show qualitative results on the
scenes we acquired using a laser scanner.

Quantitative evaluation Our method was evaluated against the dataset provided
by Mian et al. [92, 93], which consists of 50 scenes taken with a Minolta range
scanner. Each scene contains four or five of the objects shown in Fig. 5.18 with
known ground truth. In the original comparison, the rhino was excluded, because

107



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

T T
o .
B .
S 06 \ .
E
(=2
S 04l \\ .
-4 Our method, T=0.01 (150 ms/obj) —&—
Tensor matching of Mian et al. (90 sec/obj)
0.2 - Spin images of Johnson and Hebert (2 h/obj)) —*— 1
Our method, T=0.03 (9 ms/obj)
0 1 1 1 1 1
65 70 75 80 85
Occlusion
(c)
T T T T T
11 ]
[0} 08 .
®
i
S 06 .
e
g
g 04 y
>4
02" Gur method, 7=0.01 (150 msfobj) —&— i
. Our methc|>d, 7=0.03 (9 ms/obj) .
0
65 70 75 80 85
% clutter
(d)

Figure 5.23: (a) Example scene from the dataset of Mian et al. [92] (b) Recognition results
with our method. All objects in the scene were found. The results were not refined.
(c) Recognition rate against occlusion of our method compared to the results described
in [92] for the 50 scenes. The sample rate is 7; = 0.01 with |S|/100 reference points
for the red curve, and 7; = 0.03 with |S|/50 reference points for the magenta curve.
(d) Recognition rate against clutter for our method.

108



5.4 EXPERIMENTS

© | (@)

Figure 5.24: Qualitative matching examples. (a),(b) Noisy scenes taken with a laser
line scanner. The unrefined results are shown as colored wireframes. The scenes show
missing data, clutter, occlusion, and noise. (c) Refined matches in an unfiltered, highly
noisy scene acquired with a commercial time-of-flight sensor. The results are projected
back into the intensity image. The backprojected boundaries are jagged since the model
was a template taken from a reference scan. (d) shows the scene and results in 3D; note
the high amount of noise. The total runtime for matching and refinement was 37 ms. (e)
Multiple detected and refined pipe joints in a scene acquired with a four-camera stereo
system. The total runtime, including refinement, was 151 ms.

109



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

the spin images failed to detect it in any scene. We did the same to allow direct
comparison with this prior work. Each object was searched in every scene using
our method, and the pose with the best score from the pose clustering was then
compared with the ground truth.

We did two detection runs with varied sampling rate 7; to test its influence on
the detection rate and the runtime. Fig. 5.23a and 5.23b show an example scene
with results. Fig. 5.23c shows the results for our two runs compared with the
data of the spin images and the tensor matching from [92]. The parameters of
spin images were set to yield maximum performance, resulting in a very large
runtime.

We found that the dataset is particularly challenging for our method due to
high-frequency wrinkles on some of the object’s surfaces. Computing the normals
before the subsampling leads to aliasing effects and results in unstable normal
directions. It is therefore important to recompute the normals after the sampling
step.

For T = 0.01, the recognition rate is 97.0% of all objects with less than 84%
occlusion, outperforming both tensor matching of Mian et al. (96.6%) and spin
images (87.8%) while being significantly faster. The values relative to the 84%-
boundary was taken from [92] and is given for comparability. Note that similar
to the compared work, we did not post-process the poses with ICP, but used only
the pose with the most number of votes.

Another advantage of our method is the possible trade-off between speed and
recognition rate: For 7; = 0.03, our recognition rate drops to 89% for objects with
less than 84% occlusion. However, the matching was more than 15 times faster
and took less than 9 ms per object instance. The recognition rate still exceeds that
of spin images. The recognition rate w.r.t. clutter is similar. Note that for one
object we try to recognize in the scene, all the other objects are considered as
clutter.

Qualitative results To show the performance of our algorithm concerning real
data, we took a number of scenes with different sensors (a self-built laser scanning
setup, a time-of-flight camera, and a multi-camera stereo setup). Fig. 5.24 shows
several scenes and results. We did not pre-process any of the acquired point
clouds (such as outlier removal or smoothing). The objects were matched despite
significant clutter, occlusion and noise in the scenes. The resulting poses seem
accurate enough for object manipulation, such as pick and place applications.

5.4.3 Feature Distribution

An important aspect for the performance of the local voting scheme is the
distribution of the point pair features, i.e., the distribution of |H(f)|. If a point
pair feature f is detected in the scene, |H(f)| votes need to be cast by the voting

110



5.4 EXPERIMENTS

scheme. Objects with many long lists can thus be slower to match than objects
with only short lists.

An extreme example is an object that consists of only a single planar patch.
Since all points are on the same plane and have the same normal direction, the
angles of all point pair features will be identical and the features will differ only
by the distance of the two points:

F(p1,p2) = (|p1 — p2|, /2, 7/2,0) (5.36)

As a result, all point pairs with the same distance have the same feature. Similar,
spheres and cylinders contain many point pairs with similar configurations.

To illustrate how this affects performance, Fig. 5.4a shows the distribution of
point pair features for several different objects. Note how objects that contain
large planar sides, spherical or cylindrical areas have a worse distribution than
free-form objects with a more distinctive geometry. Fig. 5.4b shows the matching
time when detecting an object in a scene that contains only itself: Matching objects
that contain symmetries is slower than matching objects without symmetries,
given scenes of the same relative size.

Note that the performance costs also depend on how often point pairs with
long lists appear in the scene. Besides the object itself, background clutter might
contain such pairs. In real-world applications, the most common case are planes
in the background (walls, floor, table surfaces) when matching objects with large
planar sides. Intuitively, the object might be detected anywhere in one of the
planes, by attaching its planar side to the plane. As a practical workaround, it
might make sense to detect and remove large planar patches before matching the
object.

Sec. 7 shows how the symmetries of primitive objects such as planes, spheres
and cylinders can be used by a modified voting scheme that avoids above’s
performance regressions.

5.4.4 Timings and Counts

To asses the runtime impact of the different steps of the detection pipeline
(Fig. 5.17), we measured the exact runtimes of all steps in the pipeline for an
exemplary scene. The measurement was done in the scene shown in Fig. 3.6
(p. 41). Additionally, the number of reference points and pose candidates for each
step is given.

Fig. 5.25 shows the corresponding timings. The two refinement steps clearly
dominate the runtime, followed by the voting step. However, all three benefit
almost linear from parallelization. A notable exception is the full ICP, which
benefits slightly less than optimal. This is because it is limited by memory and
cache throughput — the random access pattern of the voxel-based nearest neighbor
structure is quite memory intensive — and because the remaining matches at that

111



CHAPTER 5: Ricip OsjecTt DETECTION IN 3D PoINT CLOUDS

0.12 T T T T

T T
1 Thread
0.1 F 2 Threads 3
4 Threads
0.08 - =

0.06 —

Time [s]

0.04 —

0.02 i

(315)
(603)
(16)

() (o]
a2 £
€ °
(1] >
(2]

sparse ICP
clustering
full ICP
scoring

Figure 5.25: Runtimes of the different steps of the detection pipeline. Times: Most of the
time is spent for voting and sparse ICP. Since the full ICP is performed only for a few
results, its impact on the total detection time is reasonable. Note that the sampling, the
clustering and the scoring step have little impact. Threads: Most steps, especially the
time-critical ones, benefit from parallelization. Note that the full ICP benefits slightly less
than optimal. Counts: 315 reference points were processed for voting, resulting in 603
pose candidates that were sparsely refined. After pose clustering, 16 candidates remained
that were accurately refined and scored.

step are distributed less than optimal to the cores. Note also that the sampling
step is not parallelized, as discussed in Sec. 2.3.

To get an intuition of the numbers involved, Fig. 5.25 also shows the number
of reference points (315), the number of pose candidates after voting (603) and
the number of pose candidates after clustering (16). Note that even though there
were more than 35 times as many poses to be refined in the sparse ICD, it still
took only about twice as long as the full ICP. Finally, after removing poses with a
score less than 0.3, a total of 9 results was returned.

5.5 Conclusion

This chapter introduced a novel approach for detecting rigid 3D objects in 3D
point clouds. It builds upon a voting scheme, similar to the Hough transform,
that operates on a local, data-driven, restricted parameter space that reduces the
dimension of the accumulator space to three. The voting uses 3D point pairs
as features, which are fast and robust to compute and to match. The voting
parameters are computed in a decomposed manner, allowing for an efficient
inner voting loop. The results of the voting scheme are additionally refined and
clustered in a detection pipeline. The method is fast, generic, robust, allows
detection multiple object instances at once and returns the optimal (in terms of
surface overlap) local pose. Experiments show that the method outperforms prior
art on a standard dataset.

112



Rigid Object Detection in
Multimodal Data

This chapter introduces a variant of the voting scheme and the detection pipeline
introduced in Sec. 5: The detection scheme is extended to find rigid objects in
multimodal RGB-D data, i.e., in data where both an intensity or color image and
a depth image of the scene are available. For this, the 3D point pair feature is
replaced by a multimodal feature that simultaneously describes the observed 3D
surface as well as edges found in the 2D image. The feature is invariant against
the distance of the object from the camera, against in-plane rotation and against
perspective distortion.

The experiments show that using this kind of multimodal information leads to
significant improvement for objects that have planar sides, which the method of
Sec. 5 would find in background clutter. Compared to prior art, the method has
a comparable performance for objects that are completely visible but performs
significantly better for partially occluded objects.

Parts of this chapter were previously published in [41].

6.1 Introduction

Edges in 3D The use of edges for object detection in 2D intensity images has a
long tradition and has proven to be a powerful feature in object detection [106,
54, 131, 67]. By contrast, remarkably little work [135, 130, 74] has been published
on using edges or depth discontinuities in range images for such tasks. This
is probably due to a number of challenges that are unique to 3D edges. Most
notably, range sensors tend to fail exactly at or around such depth discontinuities.
Triangulating reconstruction methods, such as stereo or structured light, suffer
from local occlusion around such edge points. Other methods, such as time-of-
flight, tend to smooth over edges and introduce veil points, i.e., points at 3D
positions that do not correspond to any real 3D points in the scene. Such effects

113



CHAPTER 6: R1Gip OBJECT DETECTION IN MULTIMODAL DATA

make it difficult to detect and accurately localize depth discontinuities in range
images. By contrast, edges in intensity images can be detected and measured
typically with sub-pixel precision, but it is in general impossible to distinguish
between texture and geometric edges.

We propose a method that combines the high accuracy of the intensity edges
with the geometric expressiveness of range information. For this, edges are
extracted from the intensity image — yielding a highly accurate position and
direction — and filtered using the range image to obtain only edges that correspond
to depth discontinuities, the geometric edges. These geometric edges are combined
with the 3D data from the range image to form a novel multimodal point pair
feature descriptor that combines intensity and range information in a scale and
rotation invariant way. The object’s appearance from different viewpoints is
described in terms of these features, which are stored in a model database.
This model database allows efficient access to similar features and captures the
overall appearance of the object. In the online phase, the multimodal features
are extracted from the scene and matched against the model database. The local
voting scheme of Sec. 5 is used to group these matches and find the pose that
simultaneously maximizes the overlap of the object’s silhouette to the detected
geometric edges as well as the overlap of the model surface and the 3D surface
of the scene. The resulting pose candidates are filtered using clustering and
non-maximum suppression, and the final result is refined using the iterative
closest point (ICP) algorithm to obtain a highly accurate pose.

Using only geometric edges instead of all edges that can be detected in the
intensity image is mostly a performance issue. Since there are in general fewer
geometric than texture edges, the voting needs to process less features, especially
in the presence of background clutter. It also allows to train based on untextured
CAD models and improves the robustness, as cluttering texture is completely
ignored.

The advantages of the proposed method are numerous: It is able to localize
textured and untextured objects of any shape and finds the full 3D pose of the
object. Multiple instances of the object can be found. The method can be trained
either using a CAD model of the object or using registered template images taken
from different viewpoints. When using templates, one template per viewpoint
is sufficient since the method is invariant against scale changes and in-plane
rotations. The method also shows high robustness to background clutter and
occlusions.

Contribution The main contributions of this chapter are in particular

1. A multimodal geometric edge extractor that combines the accuracy of
intensity edges with the expressiveness of depth edges.

2. A viewpoint dependent multimodal point pair feature that simultaneously

114



6.2 RELATED WORK

describes the object’s surface and its silhouette, and that is invariant against
scale changes, in-plane rotation and perspective distortions.

3. The integration of the above feature into the voting scheme of Sec. 5.

The proposed approach is evaluated both quantitatively and qualitatively and
compared against other state-of-the-art methods. It shows comparable results
and higher robustness with respect to occlusions. In the remainder of this chapter,
we will first discuss related works, describe our method, and finally present our
results.

6.2 Related Work

A more detailed list of methods related to 3D object detection can be found in
Sec. 5.2. Here, we focus on multimodal object detectors that combine depth and
intensity.

Stiene et al. [135] proposed a detection method in range images based on
silhouettes. They rely on a fast Eigen-CSS method and a supervised learning
method. However, their object description is based on a global descriptor of
the silhouette and is thus unstable in the case of occlusions. They also require
a strong model of the environment, which does not generalize well. Steder et
al. [130] use an edge-based keypoint detector and descriptor to detect objects
in range images. They train the descriptors by capturing the object from all
directions and obtain good detection results in complex scenes. Compared to
their approach, the proposed method is more robust as it does not require a
feature-point detector that relies on object parts with corner-like characteristics.
Wu et al. [153] used a perspective correction based on 3D data similar to the
correction presented in this chapter.

Hinterstoisser et al. [65] proposed a multimodal template matching approach
that is able to detect textureless objects in highly cluttered scenes but is sensitive
to occlusion and does not recover the 3D pose of the object. Compared to their
approach, the approach presented in this chapter is more robust to occlusions
and, owing to the scale- and rotation-invariant feature descriptor, requires fewer
template images. Sun et al. [138] use multimodal information to simultaneously
detect, categorize, and locate an object. However, while working well in many
scenarios, the approach requires large training datasets. Lai et al. [80] propose
a distance-based approach for object classification and detection in multimodal
data and provide a large evaluation dataset. However, they also do not recover
the pose of the object and show no results for clutter that is close to the target
object.

A small number of edge detectors for range images were proposed, such
as [130, 74]. However, designing a generic edge detector for range images
is a very difficult task, mostly because different sensors tend to behave very

115



CHAPTER 6: R1Gip OBJECT DETECTION IN MULTIMODAL DATA

[ ]

C \ LT \// N r

i
e

Figure 6.1: Left: Even if the object is seen from the same direction and from the same
distance, lengths and angles appear distorted in the image plane. Right: We apply a
perspective correction by reprojecting onto a new image plane I’ with the same focal
distance, but orthogonal to the line of sight to the reference point r.

different at or around edges. As discussed above, different range sensors, such
as time-of-flight cameras, stereo systems, structured light, laser triangulation,
depth-from-focus, or photometric stereo exhibit very different characteristics in
terms of noise, missing data, occlusion and smoothing.

Choi et al. [29] proposed to detect and use edges and line segments in range
images, and to form point pair features that include those edges or line segments.
This is similar to the approach in this chapter. Their approach is, however, limited
to range sensors that provide very accurate information at edges, as they need
to both detect the edge direction and the depth at the edge. Additionally, their
approach is limited to objects that have articulated edges.

Compared to the rigid object detector from Sec. 5, which uses 3D information
only, the multimodal approach is more robust when detecting objects that appear
similar to background clutter. This is often the case if the object’s surface contains
large planar patches: Since the method from Sec. 5 does not take the object
boundaries or the viewpoint-dependent appearance into account, such objects
are often detected in walls or tables.

6.3 Method

The objective is to detect a given 3D object and determine its pose in a multi-
modal RGB-D image. Here, RGB-D stands for sensors that provide both, an
intensity image (RGB) and a depth image (D) from the same Viewpoint.1 The
proposed method does not use color, but only edges. It can thus work also with
multimodal sensors that provide a grayscale instead of a color image. However,
since multimodal sensors are often denoted as RGB-D sensors, we will stick to
this notation.

INote that sensors often have slightly different viewpoints for the intensity and depth sensor. However, if
their relative pose is known, the 3D data from the depth data can be re-projected into the intensity image to
simulate a common viewpoint.

116



6.3 METHOD

We assume that the 3D model of the object we want to detect and localize
is available to us, either as a 3D CAD model or reconstructed from multiple,
registered RGB-D images. The scene in which we search for the object of interest
is captured with an RGB-D sensor and may contain clutter and occlusions.

The proposed approach differs from the voting scheme and the detection
pipeline introduced in Sec. 5 by the choice of the feature. Instead of using the
point pair feature from Sec. 5.3.1, a multimodal feature is used that combines
3D surface information and 2D contour information. The remaining parts of the
detection pipeline — notably the voting scheme over a local parameter space, the
pose clustering and the optional refinement — are left untouched. Note that one
could use a refinement method that optimizes both modalities simultaneously
instead of ICP, which optimizes only the 3D modality. However, such a method
is outside the scope of this work.

In the reminder of this section we will first introduce our novel multimodal
feature and then discuss its use for object model description and then detection
and localization.

6.3.1 Multimodal Feature

Let M be the oriented 3D point cloud of the model we want to detect and localize.
The scene in which we search the object of interest is an RGB-D image composed
of an intensity or color image I- defined for domain ()¢ and a range or depth
image Ig defined for domain Q. As described further below, we extract a
set of geometric edge points QO C Q)¢ from both modalities. In practice, the
range image must be calibrated so that we know the metric measurement of
the scene. Our principal intuition for the creation of our multimodal feature is
that the intensity image provides accurate information at depth discontinuities,
such as the object’s contour, where depth sensors tend to fail, while the depth
sensor provides information on the inner surface of the object where, in the
absence of texture, the intensity image provides little or unreliable information.
Therefore, intensity image and range image complement each other and our
feature combines the stable information from both modalities. The feature pairs
a reference point r € Qg from the range image, selected from the visible part
of the object, and a point e € QO from the set of geometric edge points. As the
geometric boundaries, and thus the geometric edges, of an object depend on the
viewpoint, our feature is inherently viewpoint-dependent.

Perspective Correction The appearance of an object in a projective image depends
on the direction from which it is seen, on the distance to the projection center, and
on the position of the projection in the image plane. The perspective distortion
due to the position in the image plane disturbs measurements of distances and
angles. To be more robust against such distortions, we employ a perspective

117



CHAPTER 6: R1GID OBJECT DETECTION IN MULTIMODAL DATA

(a) (b)

() (d)

Figure 6.2: Example of the geometric edge detector. (a) Original color image. (b) Edges
extracted from the color image. (c) Range image. (d) Filtered geometric edges: Color
edges without depth discontinuity perpendicular to the edge direction are removed.
Only geometric edges remain, which are localized with high accuracy in the color image.

correction step that reprojects the edge e € (), the reference point r € (g, and
its normal n, onto a new image plane. Without loss of generality, we assume the
camera center to be in the origin, i.e., the viewing direction towards r is v, = t/|r|.
The new image plane onto which we project is defined as the plane perpendicular
to v, and with some fixed focal distance f from the projection center.

The reference point r is thus projected into the center of the new image plane,
and the visible features appear as if seen in the center of the image. Fig. 6.1
depicts this correction step. For clarity, we continue to write e and r even if the
corrected values are meant. This undistortion is performed both in the online
and the offline phase and boils down to a homography that is efficiently applied
on-demand to each edge point.

Geometric Edge Detection Visible edges in an intensity image can be categorized
into texture edges, which are found mainly on the inner parts of a surface, and
geometric edges that appear due to depth discontinuities in the scene. The latter
occur mainly on the occluding boundaries of objects, but can also appear on
inner parts of the object. To localize an object, the proposed method uses only

118



6.3 METHOD

the object’s geometric edges for several reasons. First, every object, textured or
untextured, has a silhouette and thus a geometric boundary. The geometric edges
are therefore a very generic feature. Second, there are typically fewer geometric
edges than texture edges in cluttered scenes, such that fewer features need to be
processed. Third, geometric edges complement the surface information from the
depth sensor as described above. And finally, geometric edges are easy to detect
in RGB-D images, as described below.

To obtain geometric edges, we first detect edge pixels e with gradient direction
e; in the intensity image I using the Canny color edge detector [23]. The detected
edges are then filtered using the depth image to obtain the geometric edges. The
filter computes the minimum and maximum depth value on a line segment along

€4,

D(e) = max Ig(e+ae;) — min Ig(e+ aey) (6.1)

a€[—s,s] a€[—s,s]

The edge point is classified as geometric edge if D(e) exceeds a certain
threshold. The threshold should be larger than the expected depth noise of the
sensor and is in practice set to 1-3 cm for images captured with a Kinect-like
device. In our experiments, the scan range s was set to 3 pixels.

This proposed filtering of geometric edges is computationally very efficient,
since it needs to evaluate only a few pixels per detected color edge point. It is also
robust w.r.t. veil points and noise. The orientation of an intensity edge depends
on the local color gradient. We re-orient the direction of the edge such that the
gradient e; points out of the object, i.e., from the surface closer to the camera
towards the surface further away. Fig. 6.2 shows an example of the geometric
edge detection.

Multimodal Feature The multimodal point pair feature describes the geometric
relation between an edge point e and a depth point r in the perspectively corrected
image. It is described by F(e,r) using a four-dimensional feature vector as
depicted in Fig. 6.3. The feature vector is defined as F(e,r) = (d(e, 1), ay, an, ay)
and contains

e the metric distance d(e,r) = Z(r)|e — r|/ f of the two points. f is the focal
length of the projection system and Z(r) is the depth of the reference point
r. The scaling factor Z(r)/f transforms the measurement from pixels to
metric units, making it invariant against the distance of the point pair from
the camera and against the focal length, i.e., scale invariant. Note that this
allows using sensors with different focal lengths for training and matching;

e the angle a; = £(e;, e — r) between the difference vector of the two points
and the edge gradient ey;

119



CHAPTER 6: R1Gip OBJECT DETECTION IN MULTIMODAL DATA

Figure 6.3: Description of the used feature descriptor. Dashed vectors and lines live in
the image plane, while solid vectors are in 3D. Our feature uses the angles &, «;,, and «a,
as well as the scaled distance Z(r)|r — e|/f. All four components are invariant against
in-plane rotations and scaling.

e the angle o, = £(n,, e — r) between the difference vector and the normal
vector; and

 the angle ay, = £(n,,v,) between the normal vector and the direction
towards the camera.

The range of a is [0;27t], while that of &, and «, is [0; 71].

This feature vector is designed to depend only on the viewpoint of the camera
w.r.t. the object. It is most notably invariant against scale changes, i.e., against
the distance of the object from the camera, against rotations of the object around
the viewing direction (in-plane rotations), and against perspective distortions.
This design allows to train the proposed method using only a single template per
viewing direction. Multiple scales and rotations, such as in [65], are not required.

6.3.2 Model Description

In the offline phase, a model description that contains the appearance of the
object from various viewpoints is built. This is done by rendering the model from
viewing directions sampled on the sphere around the object or by using templates
acquired by the user. The model description is represented by a hash table that
maps quantized multimodal feature vectors to lists of multimodal point pairs
with similar feature vectors. This is similar to the descriptor used in Sec. 5.3.2,
but using the proposed, viewpoint dependent multimodal feature. The hash table
allows constant-time access to similar features on the object.
The following steps are performed to create the model description:

120



6.3 METHOD

1. Create a set of model reference points R C M by uniformly sampling the
model (see Sec. 2.3).

2. Select a set of viewing directions that contain all directions from which the
object can be seen in the online phase. In practice, we uniformly sample
~ 300 viewpoints from the unit sphere. Using less lead to a decreased
performance, while using more than 300 viewpoints lead to no measurable
improvement of matching performance. This is due to the remove of du-
plicate features in the voting lists (see Sec. 5.3.5): viewpoints that are very
similar to an already used one lead to identical features, which are then
removed.

3. Obtain the object’s appearances I¢, Ig from the different viewing directions.
This is done either by rendering the object from the selected directions, or
by using template images acquired by moving an RGB-D sensor around the
object and registering the views.

4. For each template, detect the geometric edges ()r on the object as described
above.

5. For each geometric edge point e € () and each model reference point r € R
visible in the corresponding template, compute the multimodal feature
F(e,r), quantize it, and store it in the hash table that describes the model.

The sampling parameters of the angle and distance coefficients of the feature
depend on the expected noise level. In practice, they are set to 12° for the angles
and 3% of the object’s diameter for the distance value.

6.3.3 Voting Scheme

The online phase uses the voting scheme presented in Sec. 5.3.4 with two modifi-
cations. First, instead of using the 3D point pair feature, the multimodal point
pair feature is used. The reference point corresponds to the 3D point of the
multimodal point pair, while the edge points are extracted the same way as in the
offline phase. Second, the closer the object is to the camera, the larger it appears
and the more edges are visible, leading to a higher score in the voting scheme.
This bias is removed by multiplying the number of votes with the distance of the
scene reference point from the camera.

The pose candidates that are created by the voting scheme are processed in
the same pipeline as described in Sec. 5.3.9, using non-maximum suppression
and optionally ICP as pose refinement.

121



CHAPTER 6: R1Gip OBJECT DETECTION IN MULTIMODAL DATA

e ——H—— K
ge) g 08 .
© ©
14 14
2 g 00 T
3 3
o a 04 .
g g
= 0.2 Proposed Method —— | = 0.2 Proposed Method —+— |
’ Method of Hinterstoisser et al. i Method of Hinterstoisser et al.
3D only (Sec. 5) —%— 3D only (Sec. 5) —%—
0 1 1 1 1 0 1 1 1 1
0 1 2 3 4 5 0 1 2 3 4 5
Avg. number of FP per image Avg. number of FP per image
1 T T T T
° o 08%
14 14 4
2 g 00
3 3
o a 04
g g
F 02 Proposed Method —+— | E o2k Proposed Method —+— |
’ Method of Hinterstoisser et al. . ethod of Hinterstoisser et al.
3D only (Sec. 5) —%— 3D only (Sec. 5) —%—
0 1 1 1 1 0 1 1 1 1
0 1 2 3 4 5 0 1 2 3 4 5
Avg. number of FP per image Avg. number of FP per image

Figure 6.4: From top left to bottom right: Detection results for the APE, DUCK, CUP,
and CAR dataset from [65] for the proposed and the compared methods. Note that the
method of Hinterstoisser et al. does not recover the object’s pose, as opposed to the other
two methods. The duck has a rather unique surface and is detected by all three methods
with a high detection rate. The car contains planar patches similar to background clutter,
leading to misdetections of the method of Sec. 5 that uses the 3D information only, while
the two multimodal approaches keep a high recognition rate.

6.4 Experiments

We evaluated the proposed method quantitatively and qualitatively on multiple
datasets and compared it against state of the art. All datasets were captured
using a Microsoft Kinect or a Primesense sensor to obtain an RGB and a depth
image with resolution 640 x 480. Both modalities were calibrated and registered.

All models were available as a CAD model. The scene reference points were
selected by uniformly sampling the scene with a distance of 4% of the object’s
diameter. All tests were run on an up-to-date computer using an unoptimized C
implementation. The evaluation took 2-10 seconds per scene, mostly depending
on the scene size and the number of detected geometric edges. We believe that an
improved implementation would speed up the method by an order of magnitude.

6.4.1 Quantitative Evaluation

Dataset Hinterstoisser et al. We first evaluated the method on several sequences
from Hinterstoisser et al. [65], namely the APE, DUCK, CUP and CAR sequence.

122



6.4 EXPERIMENTS

T

T T
Proposed Method —+—
Hinterstoisser etal. —<—

3D only (Sec. 5) —%—

0.8 -

Detection Rate

Detection Rate

0 0.2 0.4 0.6 0.8 1
Occlusion

(d)

Figure 6.5: (a) Example image of the artificial occlusion that covers the ape. (b) Detection
rate vs. occlusion for the occluded ape sequence. The occlusion measures how much of
the original ape surface visible in the image is occluded. (c) Example image showing the
occlusion on the real-world occlusion dataset and the detection result of the proposed
method in green. (d) Detection rate vs. occlusion for the occluded chair sequence.

The CAMERA and the HOLEPUNCHER sequence were not evaluated because
no CAD model was available. Each sequence contains 255 template images that
were used for learning the features and over 2000 evaluation images. Note that
the template matching used in [65] does not recover the pose, as opposed to our
method. Nevertheless, to allow a comparison between both methods, we employ
the criterion of [65] to classify the correctness of matches. This criterion compares
the bounding box of the ground truth and the match. Note that this classifies
matches at the correct position but with an incorrect rotation as correct. However,
we found that such incorrect classifications were rare for our approach. Fig. 6.6
shows example scenes and detections. Fig. 6.4 shows the detection rates for our
proposed method, the method of Hinterstoisser et al. and the method of Sec. 5.

Overall, our method performs slightly worse than the method of Hinter-
stoisser et al., but still reaches quite high recognition rates. A manual inspection
of the scenes where our method failed shows that most missing detections were
due to a failure of the 2D Canny edge extractor. This extractor failed in scenes
with high motion blur and in areas with little contrast, i.e., when object and
background color were similar. Compared to the localization method of Sec. 5,
the multimodal method performs approximately equal for the duck and cup

123



CHAPTER 6: R1Gip OBJECT DETECTION IN MULTIMODAL DATA

Original image Result of [65] Result Multimodal

L

Result 3D only

L

Figure 6.6: Detection results for several scenes from the dataset of [65]. From left to right:
Original scene, detection result of [65], detection result of the 3D-only method of Sec. 5
(in red), multimodal result (in green). Note that the method of Hinterstoisser et al. does
not recover the object’s pose, but only the bounding box of the best matching template.

sequence but significantly better for the ape and car sequence. This is mostly
due to the rather flat back of the ape and the large planar parts of the car: The
method of Sec. 5 optimizes the surface overlap of model and scene, leading
to false positives if large parts of the object are similar to clutter. The method
proposed in this chapter, which optimizes both surface and silhouette overlap, is
able to correctly remove such false positives.

Another difference is that the approach in [65] uses all edges in the templates,
including texture edges. This might improve the robust of their approach com-
pared to ours, where only contour edges are used. Note, however, that the dataset
is comprised of objects that have little to no texture.

124



6.5 CONCLUSION

Occlusion We additionally evaluated the three methods against partial occlusion
of the target object using two datasets. For the first dataset, one of the images
from the ape sequence was disturbed by artificially occluding different parts
of the ape in both the RGB and the depth image. A total of 256 images with
varying amounts of occlusion was created this way. The detection rates of all
three methods and an example image are show in Fig. 6.5 (a), (b). Note that we
set the parameters of the method of Sec. 5 such that similar timings as with the
new method were obtained. As explained in Sec. 5, higher detection rates can be
achieved by allowing the method to run longer.

For the second dataset, we used varying amounts of real occlusion of a chair
that was put in a fixed position with respect to the sensor. For the model creation,
a reference image without occlusion was used. Fig. 6.5 (c), (d) show an example
image and the resulting detection rate for this dataset.

The proposed method clearly outperforms both the 3D only matching and the
method of [65] in case of non-trivial occlusion. For the method of Hinterstoisser et
al., occlusion of certain key regions of the object that contribute the most to the
detection lead to drastically reduced detection rates. On the contrary, our method
treats all edge and inner regions equally. The method of Sec. 5 suffers from a
similar effect, where for larger occlusions the remaining surface parts of the object
look more similar to background. Since the proposed method optimizes both
surface and geometric edge overlap, significantly larger occlusions are necessary
to reduce the detection rate.

6.4.2 Qualitative Evaluation

The proposed method was also evaluated qualitatively with objects of different
size and shape. Fig. 6.7 show several test images and detections. We found that
the method performs very well even in case of occlusion and large amounts of
clutter. The method works equally well and with the same speed for all tested
objects. This is a major advantage over the method of Sec. 5, which deteriorates
both in terms of speed and detection performance for planar objects.

6.5 Conclusion

This chapter introduced a novel method that detects rigid objects in multimodal
RGB-D data. The method is based on the voting scheme of Sec. 5 but replaces the
3D point pair feature with a multimodal point pair feature that combines the most
valuable information — accuracy of intensity edges and geometric expressiveness
of depth edges - from both modalities.

The experiments show that the method is fast, robust and generic. Compared
to the baseline method of Sec. 5, the modifications significantly improve perfor-
mance for objects with large planar sides. Compared to prior art, the method

125



CHAPTER 6: R1GID OBJECT DETECTION IN MULTIMODAL DATA

Figure 6.7: Detection results for several example scenes, showing large amounts of clutter
and occlusion, multiple instances, texture-less objects and planar objects, all in arbitrary
poses. The detections are outlined in green. Note that objects that were reconstructed
from reference images, such as the chair, have a rather rough outline compared to objects
modeled from CAD data, such as the box.

has comparable performance for well-visible objects and a significantly better
detection rate for partially occluded objects.

126



Primitive Shape Detection in 3D
Point Clouds

The segmentation and fitting of geometric primitives is often an important part of
scene understanding, robotics, reverse engineering and other applications. It can
help to build a high-level description of the scene by decomposing a potentially
large set of 3D points into a small set of primitives. For example, a robot
operating in indoor environments can segment planes to find floors, ceilings and
walls. Some object detection schemes decompose the target object into primitive
shapes and attempt to detect those shapes in their particular configuration in
the scene ([129]). Segmentation of primitives also has applications in reverse
engineering. One particular application is the detection of buildings in 3D LIDAR
scans taken from planes [149, 141].

This chapter proposes a novel approach for the detection and segmentation of
certain geometric 3D primitives — namely planes, spheres and cylinders — from 3D
point clouds. It is based upon the local voting scheme introduced in Sec. 5, which
is able to detect 3D objects of arbitrary shape. Here, we use the symmetries of
primitives for three fundamental optimizations, which make the detection faster,
more robust and more generic. First, the feature database can be made implicit.
Second, the voting space, i.e., the parametrization of the object’s pose, can be
optimized by removing redundancies that arise due to object symmetries. Finally,
the parameter space can be extended to hold simple shape parameters, such as
the radius of a cylinder or a sphere. This chapter also introduces an extension of
the ICP method from Sec. 4 that refines the candidate primitives found by the
voting scheme.

Parts of this chapter were previously published in [44].

127



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

7.1 Introduction and Related Work

Several approaches for the detection of geometric primitives in 3D point clouds
were suggested in the literature. Most approaches can roughly be classified as
region growing, RANSAC [52] or Hough transform-based voting schemes. Our
approach is based on the latter.

While the Hough transform has promising properties, such as determinis-
tic runtime and robustness against local disturbances that can interfere with
segmentation based approaches, it has several drawbacks when applying it to
primitives in 3D. First, the size of the Hough space grows exponentially with the
number of parameters. For example, cylinders have four parameters for their
position and one for the radius, leading to a five-dimensional parameter space.
High-dimensional voting spaces, however, require significantly more memory,
are slower to process as usually more votes are cast, and have an increased sensi-
tivity due to binning. Second, it is difficult to uniformly sample the directional
components of primitives such as planes (plane normal) and cylinders (main
axis direction), as there is no proper uniform segmentation of the unit sphere in
3D for arbitrary sampling sizes. Attempts to work around those problems, such
as removing some dimensions by projecting them, typically lead to problems
with large scenes where a lot of clutter is present or that contain multiple object
instances.

Our approach circumvents all the problems of the traditional Hough transform.
By using the local parameters of Sec. 5.3.3, the voting space is smaller and more
robust. Additionally, the directional component is implicit in the scene normals
and requires no discretization. Finally, since our approach is local, it is highly
robust against even with large amounts of clutter and deals well with multiple
shape instances. We give a theoretical comparison between our proposed Hough-
based voting scheme and RANSAC in Sec. 7.3.

Contributions The contributions of this chapter are in particular:

* A new Hough transform like voting scheme for the detection of geometric
primitives that circumvents the problems of ‘classical’ Hough schemes for
such objects, especially regarding the parametrization of directions and the
size of the accumulator space;

* robust ICP-like refinement algorithms for the different primitives; and

* a corresponding detection pipeline that refines the results of the Hough
transform, removes duplicates and computes a robust score for the primi-
tives.

Region Growing Methods based on region growing usually start with an (over)segmentation
of the scene — sometimes even up to individual points — and combine spatially

128



7.1 INTRODUCTION AND RELATED WORK

neighboring segments if they describe a consistent primitive. Different kinds of
segmentation, neighborhood metrics of the segments and models to be fit into
the segments exist. Morwald et al. [96] fit B-Splines of first or second order into
adjacent segments, fusing the segments if the fit of the fused segments is better
than for the two separate segments. By using B-Splines, their approach is able
to segment several types of geometric primitives. Kim and Ahn [78] proposed a
region growing algorithm that uses curvature analysis of local patches to auto-
matically select the primitive type and its parameters. Nurunnabi et al. [104] use
a robust variant of the PCA, the Minimum Covariance Determinant, to reduce the
influence of outliers. Attene et al. [5] use a hierarchical region growing approach
to segment a triangulated mesh into primitives, joining neighboring triangles
or groups if the joint group is better approximated by a primitive than the two
disjoint groups.

Region growing methods usually have favorable runtimes as the merging
is often linear in the number of segments. However, especially compared to
the proposed approach, they also have several drawbacks: Primitives that are
made up of disconnected components (such as a plane that is separated by an
occluding object) are not joined; greedy decisions during the merging of segments
can lead to incorrect, yet unrecoverable decisions; several parameters need to be
fine-tuned for both the segmentation and the merging steps; if the input data and
the transition between two primitives is very smooth, the segmentation might
fail to segment; and finally, if the input data is very noisy, the segmentation step
might oversegment and the merging step might fail to merge those neighboring
but noisy segments. All of these issues are resolved by the proposed method.

RANSAC RANSAC-based approaches randomly sample a set of points from
the scene and compute a primitive that contains all points. The hypothesis is
evaluated by counting how many scene other scene points it contains. Multiple
such hypotheses are randomly created and the one containing the most scene
points is returned. Tarsha-Kurdi et al. [141] compare several approaches and de-
signed a RANSAC-based approach that integrates domain-specific knowledge of
the shape sizes. They conclude that RANSAC is inferior to the Hough transform.

Compared to the proposed method, RANSAC-based methods have the disad-
vantage of being nondeterministic in runtime and output, a property that is often
undesirable in industrial setups. Additionally, in the presence of large amounts
of clutter, noise or many instances, they require careful tuning of the parameters —
such as the neighborhood from which to select the random samples — in order to
remain efficient.

Voting  Finally, methods based on the Hough transform recover the parameters
of primitives using a voting scheme. The parameter space is discretized into bins,
and the detected features vote for parameters that explain them. Several authors

129



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

proposed the Hough transform for detecting planes in bird-eye LIDAR-Scans of
urban environments [149, 107]. Rabbani and Van den Heuvel [110] proposed a
Hough-based approach for cylinders. Bormann et al. [21] gives a comprehensive
review of Hough-based approaches for detecting planes in 3D point clouds. They
describe the difficulty of finding a good Hough space, which is a compromise
between accuracy, runtime, storage space, and robustness. In the particular case
of planes and cylinders, one needs a uniform subdivision of the space of normal
directions. Since that does not exist in the general case, several approximations
were proposed. Bormann et al. propose a new one, based on an adapted sampling
of the polar coordinates. While an improvement, their discretization is still
nonuniform, making computation of the parameters from the features expensive.
The approach proposed in this chapter completely circumvents the issue of
discretizing normal directions using a data-driven, local parametrization.

Others Ahn et al. [1] proposed a semi-automatic approach for primitive segmen-
tation, where the user selects the primitive type and one point of the primitive.
The primitive is initialized by fitting it into a neighborhood of the point selected by
the user. While robust, this approach is not suitable for fully automatic segmenta-
tion. Li et al. [84] perform a post-processing of detected primitives. They assume
that man-made structures were scanned that exhibit certain regularities (parallel
planes, repeating structures), and globally optimize detected primitives to adhere
to those regularities. While the results are very good for reverse engineering, they
report runtimes of 3-10 minutes. Ioannou et al. [73] use a multi-scale Difference of
Normals (DoN) filter that estimates normals using local neighborhoods of differ-
ent sizes, and computes by how much those estimates differ. Regions are then
clustered based on the magnitude of those differences. The method can be highly
parallelized and shows good results for scene understanding of outdoor scenes.
However, it does not immediately segment the primitives we desire. Willis and
Zhou [151] propose a segmentation based on finding closed ridges that segment
a surface into two disjoint parts. Their approach requires a connected surface,
which is not always available.

7.2 Method

In the following, we first present the overall detection pipeline for primitives. The
details of each step are then described in the subsequent sections.

7.2.1 Detection Pipeline

Our detection of primitive shapes follows a pipeline approach. Each step of the
pipeline processes a set of candidates and modifies or filters them. We found that
the pipeline shown in Fig. 7.1, which is similar to the detection pipeline for the

130



7.2 METHOD

Scene —| Voting

|

Non-Maximum Suppression

!

Segmentation

I

Sparse Refinement

!

Non-Maximum Suppression

I

Segmentation

|

Dense Refinement

!

Non-Maximum Suppression — Detected Primitives

Figure 7.1: Detection pipeline for all primitives. Given some scene, the local voting
scheme is used to generate a set of primitive candidates. The resulting candidates are
then refined twice using a variant of ICP, first using a sparsely sampled scene, then using
the full scene. In between, duplicate candidates are removed.

rigid object detection (Sec. 5.3.9), gives good results. The voting step generates
an initial set of hypotheses, which are first refined using a sparsely sampled
scene and then refined more accurately using all scene points. After each step,
a non-maximum suppression is performed, which removes similar hypotheses,
keeping only the one with the locally highest score. The details of the voting, the
refinement and the non-maximum suppression vary based on the primitive type.

The two-step refinement, first sparse, then dense, is used with the same
motivation as explained in Sec. 4.5. A sparse cloud is enough to refine the
candidate with a good accuracy, but is significantly faster than when using the
tull point cloud. Since the candidate is then more accurate, fewer iterations of the
more expensive full-cloud refinement are required.

After each step, the candidates are scored by some metric. For the voting
scheme, the number of votes cast for each candidate is used as score. After
the refinement steps, a more accurate score is computed that depends on the
particular primitive and is explained below. For performance, candidates with
low scores can be pruned to avoid the computational costs of processing them
in later stages. The score is also used to decide which candidates to keep in the
non-maximum suppression steps.

For the voting scheme, the point cloud is subsampled to speed up the voting
and to remove the bias towards more densely sampled parts of the scene. The
sampling distance is computed relative to the approximate size of the primitive.
This requires the user to give some approximation for the length of cylinders and

131



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

for the size of planes.

Non-Maximum Suppression The non-maximum suppression removes candidates
that are similar to other candidates by keeping only the one with the highest score.
If multiple reference points are selected from a primitive’s surface, the voting
will generate a candidate for the same primitive for each of them. Remove such
duplicates in the early steps of the pipeline improves the overall performance, as
less candidates need to be processed. After the last step, it avoids returning more
than one result for each primitive.

The non-maximum suppression is performed by first sorting all candidates
by their score. The candidates are then processed from best to worst; for each
one, all similar candidates that have a lower score are removed. To improve
performance, a primitive-dependent indexing is used to speed up the search for
potentially similar candidates. For spheres, a spatial index of the center is used.
For cylinders and planes, an index over the direction of the main axis and the
normal vector, respectively, is used. The following pseudocode illustrates this.

Input: Set of candidates ¢; € C, each with a score s(c;)

Sort C by score
Generate primitive—dependent index I over C
for i from 1 to |C| do:
for each ¢; that is similar to ¢ (found using I) and where j>i

remove ¢; from C

Output: Set of sorted and de—duplicated candidates C

Segmentation For planes and cylinders, which are potentially unbounded, an
additional and optional segmentation step can be performed prior to the refine-
ment. The segmentation is responsible for removing far-away parts of the scene
which would lie on the primitive, if it was unbounded, but which one would not
consider to be on the primitive in practice. The segmentation is required since
the voting does not give exact bounding information about the primitive. Fig. 7.2
illustrates the segmentation.

First, all points that are on or close to the primitive are detected. The thresholds
are determined from the expected noise in the point positions and normal
directions, as well as — for the sparse refinement — the expected inaccuracy due to
the voting.

Second, the resulting set of points is decomposed into connected components.
The allowed minimum gap between two point sets for them to become separated
is a user-defined parameter. It should be larger than the expected point density.
Only the component that contains the reference point from the voting scheme is
used for the refinement of the primitive.

132



7.2 METHOD

A
®o000 Oo‘u
® ° o °
® (XXX °
()
A
o000 o0 ‘o.. o®,

A
®©oo0o0o0 ooéooo e®
O

(©

Figure 7.2: Illustration of the segmentation. (a) A scene point cloud (black points) and
a plane candidate. The green region includes all scene points that are on the plane,
assuming a certain level of noise. (b) The potential points on the plane are selected. (c)
The selected points are partitioned into connecting components. Only the component
that contains the original reference point (here the green, central one) is used for the
refinement.

7.2.2 Local Parameter Space

As we did for rigid 3D objects in Sec. 5.3.3, for the voting scheme, we parametrize
the position of each primitive relative to some fixed, oriented scene point using
local coordinates. However, the properties of primitives allow for the following
modifications, which are summarized in Fig. 7.1.

Removing Redundant Parameters While (m,«) is good for parametrizing the
transformation of an arbitrary free-form object, it is an overparametrization for
geometric primitives. Because of their symmetries, poses of primitives can be
described with fewer parameters than poses of free-form objects.

Planes and spheres with fixed radius are symmetric w.r.t. rotations around
normal vectors, and they look identical from each point on their surface. Their
local parameter space thus requires no parameters. In other words, a single 3D
point and its normal fully defines the plane and the fixed-radius sphere it is
on. For cylinders with fixed radius, the position of the corresponding point on
their surface is irrelevant, however, they are not symmetric w.r.t. rotations around
normal vectors. The local parameter space for cylinders with fixed radius is thus
one-dimensional and contains only «.

The reduced local parameter space has several advantages. First, depending

133



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

Table 7.1: Summary of proposed parameter space dimensions.

Number of parameters
Shape Rigid Local  Shape

Free-form 6 3 0
Plane 3 0 0
Sphere 3 0 1 (radius)
Cylinder 4 1 1 (radius)

on the shape, it requires no sampling of the model’s surface and of the rotation
angle, thus avoiding the binning problem. Second, it is more robust due to fewer
redundant variables. Finally, it is computationally more efficient, since fewer
votes need to be cast and a smaller space needs to be analyzed.

Shape Parameters As another modification, the local parameter space can be
extended by certain non-rigid shape parameters of the object. For example, in
certain applications, the radius of spheres and cylinders might be unknown or
might vary within a certain predefined range. We thus extend the local parameter
space by a non-rigid shape parameter of the primitives, namely their radius.
Note that fundamentally, extensions of the local parameter space by additional
non-rigid shape parameters — such as the scale of the object — are possible even for
free-form objects. However, since the parameter space grows exponentially with
the number of parameters, it quickly becomes too large for practical applications.
Additional shape parameters are thus especially suited for symmetric objects, for
which the local parameter space is already reduced as described above.

The number of votes corresponds to the number of scene points that lie on the
target object. For a uniformly sampled scene, when introducing a scaling shape
parameter such as the radius of a sphere, this introduces a bias towards larger
shapes: Larger shapes have a larger surface area, and more scene points will lie
on them, even if a smaller ratio of the shape’s surface is visible. To remove this
bias, we will normalize the voting space for such shapes by dividing the number
of votes of each cell through the influence of the shape parameter on the surface.
For example, for spheres, the number of votes for a bin is divided through 2.

In practice, a user-defined range of possible radii [Fmin, "max] is used. For the
voting scheme, we sample the radius uniformly in steps of

Sradius = Tmax/ Nyadius (7-1)

7.2.3 Point Pairs

For the detection scheme in Sec. 5, point pairs are extracted from the scene
and matched against the model using a hash table. That approach, while fast,

134



7.2 METHOD

Figure 7.3: (a) Point pair feature for spheres. Given a sphere with center C and radius r,
the normals of two points p; and p; on the sphere form the angle «. (b) Illustration of
the influence of angular noise on point pairs of a plane. Given a reference point r and
its normal n,, a scene point s is considered to be “on” the plane defined by r and n,,
if |[£(s—1,n,) — /2| < g, i.e., if itis on a plane that is within the tolerance é, of the
normal vector. The direction of the normal ng of s must also be within that tolerance.

introduces several issues: Since the feature vectors are discretized for the hashing,
mismatches can happen at the sampling boundaries; an offline phase is required
to build the hash table; a static hash table does not allow shape parameters, such
as a radius, or shapes with a-priori unknown size, such as large planes or long
cylinders; and finally, it does not allow an explicit model of the expected noise in
point positions and normal directions.

In this section, we instead use the implicit nature of primitives to match point
pairs and to extract possible shape parameters. Such an implicit database has
several advantages. First, it does not require an expensive pre-processing phase.
Second, depending on the primitive type, it has fewer parameters: For planes and
spheres, the model’s sampling distance as well as the feature discretization param-
eters are no longer required. Third, implicit databases allow to model “infinitely”
large planes or cylinders. This allows to search for such primitive objects without
knowing their size in advance. Finally, the discretization and hashing approach
can lead to missed matches for features close to the discretization boundaries.
This problem is avoided with an implicit database, making the method more
robust. As downside, the implicit database might be computationally more
expensive compared to an explicit database.

In the following, §, < diam(M) is the expected approximate noise in the
position of the points, and 6, < 71/2 is the expected approximate angular error
of the normal vectors. We assume the positional noise to be much smaller than the
diameter of the primitive and ignore its influence onto the angular components
of the point pairs.

135



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

Plane Ideally, all point pairs on a plane have parallel normal vectors and an
angle of 90° between the difference vector of the two points and the normal
vectors. Given two points p; and p; with normals n; and n; and their difference
vector d = p2 — p1, the corresponding point pair features are

F(p1, p2) = (|d], £(n1,d), £(nz,d), £(n1,n2)) (7.2)
= (|d[,/2,7/2,0) (7.3)

Since planes are infinitely large, |d| can take any non-negative value.

In practice, both the point coordinates and the directions of the normal vectors
will be affected by noise. As illustrated in Fig. 7.3 (b), all point pair features on a
plane can then be described as

F(pl,pz) € ]RX[?T/Z—&K,N/Z—F&K]X
[71/2 =084, 71/2 4 4] X
0,26 ] (7.4)

For performance reasons, we evaluate (7.4) using the dot product instead of
computing the angles:

cos(m/24+64) <mny-d/|d| < cos(m/2—6y) (7.5)
cos(rt/2464) <mp-d/|d| < cos(rt/2—6y) (7.6)
cos(204) < ny-ny (7.7)

We thus check if a scene point pair is on a plane by evaluating (7.5)—(7.7).

Sphere As with planes, the point pair database for spheres can be defined
implicitly. As visualized in Fig. 7.3 (a), given a sphere with radius r, the point
pairs can be described based on the angle « formed by the sphere’s center and
the two points:

F(p1,p2) = (2rsin(a/2), (mr—a)/2,(m+«)/2, ) (7.8)

Given a scene point pair, we want to evaluate if it lies on a sphere, and if yes,
what possible radii that sphere might have. We write & and |d| for the measured
values from the feature components F; and F4, and @ and |d| for their underlying
exact ground truth values. Since both normals might be off by an angle of up to
6, we know that

« € [max(0,x — 26y), & + 25,] (7.9)
|d[ € [max(0,|d| — d,),|d| + J,] (7.10)
The range of possible radii is therefore

4=, 4+,
2sin((a 4 26,,)/2)" 2sin(max (0, & — 26,,) /2)

(7.11)

136



7.2 METHOD

Figure 7.4: Point pair feature for cylinders.

Note that for « < 24, the upper boundary for r can be infinity. This corresponds
to two points with almost parallel normal vectors which could lie on a sphere
with an infinitely large radius.

The remaining two components F, and F3 of the feature, the angles between
the normal vectors and the difference vector, are not used for the computation
above. However, their value is checked against the possible range of values and
the point pair is discarded as not being on a sphere if one of those two checks
fails.

Cylinder While an implicit model for point pairs on a cylinder is possible, such
a model would be rather complex and it is computationally expensive to extract
the voting parameters « and r from a given point pair. Instead, we pre-create a
model that maps given point pairs to the corresponding voting parameters. Note
that we only detect and refine the walls of the cylinders, not the caps.

As depicted in Fig. 7.4, let r be the cylinder’s radius, I the distance of the two
points along the cylinder’s main axis, « the angle formed by the two points and
the main axis when projected along the cylinder’s axis (similar to Fig. 7.3 (a)) and
s the distance of the two points if projected along the cylinder’s axis. Without
loss of generality, we assume that the axis is a = (0,0,1)” and that n; = (1,0,0)".
The feature vector is then

F(p1,p2) = (|d], £(ny,d), 7 — F, )
= (Vs2+12,
£((1,0,0)T, (r(1 — cosa),rsina,)7T),
m—Fp,a)

(7.12)

Note that the three angles of the features do not depend on the radius, while
the length component scales linearly with the radius. On a cylinder with radius

137



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

r, two points will form the point pair F"(p1, p2). Scaling the complete system by
1/r leads to the feature

F!(p1,p2) = (F}/r,F}, Fj, F}) (7.13)

We pre-compute the list of possible features, using a cylinder with radius 1
and some maximum length. Due to the symmetries of a cylinder, we can fix a
single point p; from that cylinder and pair it with all its other points p,. The
complexity of the cylinder model generation is then O(N), compared to O(N?)
for a non-symmetric, free-form model, where every point is paired with every
other point. In the online phase, those features are matched against the observed
features using only the scale-invariant angular components F,, F3 and Fy4. For
each matching feature, we compute the radius as

r=F;/F] (7.14)

The matching point pair is discarded if the radius is outside the range of allowed
radii.

Since scaling does not change angles, we can pre-compute the rotation angles
ay, for the voting scheme as described in Sec. 5.3.5.

While cylinders can have arbitrary lengths, we must decide for a finite length
when sampling the prototype cylinder of radius 1. However, note that for very
large ratios I /r (i.e., for points very far away from each other w.r.t. the radius of
the cylinder), the feature converges towards

F(p1, p2) = (Ilp1 — p2l, ©/2, /2, a) (7.15)

Since we use only the angles for feature lookup, all point pairs for which |p; — p2|
exceeds a certain threshold will therefore fall into the same bins. We thus add a
set of special bins, for which F; = F3 = 7t/2 and F4 € [0, t]. If a scene feature
falls into one of those bins, a vote is cast for all allowed radii.

7.2.4 Refinement

Framework The results of the voting scheme will inherently be slightly incorrect
because of noise in the input data and sampling of the parameter and feature
spaces. Similar to Sec. 4, we use an iterative re-weighted least squares approach
to refine the candidates, i.e., to minimize the weighted sum of squared distances
from the primitive to the observed scene data. We mostly follow the framework
of Sec. 4, except for the following differences:

* Instead of finding the closest model point for each scene point, the distances
between scene and primitive are computed explicitly using the primitive’s
corresponding formula,

138



7.2 METHOD

* the update of the primitive’s parameters are parametrized differently to
avoid overparametrization due to symmetries, and

* for planes, no inner iteration is required since the optimization can be solved

directly.
Formally, following Sec. 4.2.1 and (4.1), we want to minimize
E(p) = Z wsdprimitive(p/ 5)2 (7.16)
s€s
=) Es(p)’ (7.17)
seS

where p are the primitive’s parameters and dprimiﬁve(p, s) is the distance between
scene point s € S and the surface of the primitive. In each step of the iteration,
we find an update d that minimizes E(d + p). Sec. 4.2.1 outlines how this is
re-formulated and solved using an iterative Gauss-Newton method. Note that
the outer iteration that adapts the weights ws remains.

Parametrizations and Updates The parametrizations p that represent a particular
primitive are chosen such that they are smooth over the complete parameter space,
thus aiding the numerical robustness. For cylinders, this is an overparametriza-
tion. Note that this is different from the parametrization of the update step of
the iterative least squares, where we will use a parametrization that is not an
overparametrization, thus avoiding null spaces in the solver, and that is locally
smooth, i.e., around the 0 update, making the update more robust.

Spheres are parametrized as p = (¢, r), using their center ¢ and their radius
r > 0. This leads to the distance function

dsphere(P,8) = |8 —¢| — 1 (7.18)

The update is parametrized directly as (J¢, &y ).

Cylinders require a somewhat more complicated parametrization to avoid
discontinuities in the parameter space. Each cylinder is parametrized as p =
(M,r), M € SE(3), r > 0. M is a rigid 3D transformation that maps the cylinder’s
main axis onto the z-axis. To be numerically more robust, we choose the initial
M such that the cylinder is close to or encloses the origin. The distance of a point
s from the cylinder is then

deylinder(p,8) = [Ms — Ms - (0,0,1)7| —r (7.19)

Note that (M, r) is an overparametrization of the cylinder. To avoid over-
parametrization of the update, following Sec. 4.2.1, we parametrize the update &
as

6= ((51*/ 5tx/ (Styz (er/ (Sry) (7-20)

139



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

where J, encodes the change in the cylinder’s radius, d;y and dy, encode the
change in the cylinder’s position orthogonal to its main axis, and J,x and &y,
encode the change in the cylinder’s main axis by tilting it. The tilt of the main
axis is performed by interpreting (J;, (5ry,0)T as Rodruiges parameters of the
corresponding rotation, which effectively tilts the z-axis. This parametrization
removes both symmetric transformations, the rotation around the z-axis and
translation along the z-axis, from the parametrization. The complete update
T (Otx, Oty, Orx, Ory) is composed of the translation (dx, dry, 0)T and the described
rotation, or

T(5tx; 5ty/ Orxs 5ry)x = R( (5rx/ (Sry/ O) T)x + (5tx/ 5ty/ 0) T (7.21)

Given current cylinder parameters py = (Mg, rx) and an update J, the new
parameters px.1 = (Myy1,7ks1) are computed as

Tk41 = Tk + Oy (7.22)
M1 = T(0tx, Oty Orx, §ry)Mk (7.23)

For spheres, all partial derivatives are computed analytically. For cylinders,
the partial derivatives w.r.t. é;, dtr and Jy, are computed analytically, while those
w.r.t. d;x and 6y, are computed numerically.

Planes are parametrized as p = (n,d) € R® x R using the normal form

dplane(p/ S) =n-s+d (7.24)
with the constraint |n| = 1. This gives
E(p) =) ws(n-s+ d)? — min (7.25)
scS

We can eliminate d by solving 6E/éd = 0, giving

1
d=—n- (N Zwss> = —n-Sy, (7.26)
seS
where s, is the weighted mean of S. Substituting (7.26) in (7.25) gives
E(p) = ) ws(n-s —n-5;) (7.27)
s€S
=Y ws(n-(s—5y))* (7.28)
seSs
=Y ws(n-8)? (7.29)
s€S

where § = s — 5. Intuitively, the scene points are translated such that their
weighted mean is zero. The partial derivatives w.r.t. the components of n are

SE
— =) wen-8§;, ie{1,23} (7.30)
5ni s€S
= (Z ws§§i> ‘n=0 (7.31)
seS

140



7.3 THEORETICAL COMPARISON WITH RANSAC

which can be combined into a single equation

0= (Z wsééT) n = Xn (7.32)

seS

Due to the constraint |n| = 1, we search for a non-trivial solution of (7.32), i.e., a
normalized vector from the kernel of X. However, due to noise and numerical
issues, the rank of X might be 3. We therefore look for an eigenvector of the
smallest eigenvalue of X instead. This is equivalent to a PCA of S: The normal
direction is the dimension into which S extends the least.

Note that contrary to spheres and cylinders, (7.25) is solved directly for planes.
However, we still perform the outer iteration that adapts the weights, in order to
remove outliers.

7.3 Theoretical Comparison with RANSAC

The proposed local voting method can be seen as a hybrid between a full
(non-local, with a single parameter space) voting scheme and RANSAC. While
RANSAC selects multiple random points, enough to fit the target primitive, the
proposed method selects only a single random point, the reference point. The
primitive parameters are deduced from that single point using the voting scheme,
which is deterministic. By selecting the reference points through uniform sam-
pling of the scene, their selection can be seen as quasi-deterministic, compared to
the usually more random selection of the multiple points in RANSAC.
Contrary to RANSAC, the method is thus non-random and has a more
deterministic runtime. Additionally, since only a single point on the object must
be found, the method is significantly faster when the ratio of inlier points in the
scene is low. For example, if p € [0,1] is the ratio of scene points on the target
object (inliers) and RANSAC requires n points to fit the model, the probability to
select n inlier points is p". The proposed method requires only a single reference
point to be selected on the target object, which has thus a probability of p.!

7.4 Experiments

We evaluated the method using an unoptimized, partly parallelized C implemen-
tation. All timings were measured on an Intel Core i5 with 3.33 GHz and 16 GB
RAM.

LOf course, many strategies for RANSAC exist to mitigate this problem, such as selecting points that are
close to each other.

141



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

7.4.1 Refinement

In a first set of experiments, we evaluated the proposed refinement algorithms for
all three primitives. The tests were done on synthetic data with known ground
truth to evaluate the accuracy and basin of convergence. Depending on the
primitive, we varied the number of close-range clutter points (outliers), the noise
in the data, the noise in the initial parameters of the primitive and the amount of
visibility of the primitive.

To make the measurements somewhat comparable and independent of the
overall scale of the data, we measure distance-based values relative to the size
of the primitives. Two relative sizes are used: The maximum diameter of the
primitive and the radius of spheres and cylinders. In particular, the Gaussian
noise o, which is applied to the scene point positions, the initialization error
and the average distance of points on the ground truth primitive to the refined
primitive is given relative to the diameter of the primitive, and the error of radius
r (cylinder, sphere) and of the sphere center c is given relative to the radius of the
corresponding primitive.

The parameters for all tests, except for the correspondingly varied parameter,
were a noise of ¢ = 0.05, a relative initialization error of 0.03, and a scene size
of ~ 7.000 points for 100% visibility (and correspondingly fewer points for less
visibility).

Fig. 7.5 shows the results for the refinement of spheres, Fig. 7.6 the results for
the cylinder, and Fig. 7.9 the results for planes. Fig. 7.7 and 7.8 show quantitative
and qualitative data of an example run with ¢ = 0.045, initial error 0.05, no
clutter and ~ 10.000 scene points. Note the fast initial convergence, where a good
approximation of the cylinder is already found in only two steps.

Overall, the refinement of all three primitives is highly robust against close-
range clutter and copes well even with larger amounts of noise. The basin of
convergence is well within the expected inaccuracy of the voting scheme, making
the refinement a good extension of the proposed voting scheme. For spheres
and cylinders that are only barely visible (10% visibility or less), the refinement
becomes less stable, especially in presence of many outliers or noise. However,
those situations represent an ill-posed problem, as the remaining part of the
primitives becomes more and more planar, making a robust estimation of the
radius difficult. Note that we found that the estimated cylinder radius slightly
exceeds the ground truth radius. This is due to a characteristic of the Gaussian
noise, which — as the cylinder’s surface is convex — on average moves more
points away from the cylinder’s axis than towards it. Though Gaussian noise is a
somewhat simplified model for sensor noise, one might have to compensate for
this effect.

142



7.4 EXPERIMENTS

Table 7.2: Results on the SegComp ABW Dataset [68] (Results from [105] and [58].)

approach correct over under missed noise
USF 12.7 (83.5%) 0.2 0.1 2.1 1.2
WSuU 9.7 (63.8%) 0.5 0.2 4.5 2.2
UB 12.8 (84.2%) 0.5 0.1 1.7 2.1
UE 134 (88.1%) 04 0.2 1.1 0.8
ou 9.8 (64.4%) 0.2 0.4 44 3.2
PPU 6.8 (44.7%) 0.1 2.1 34 2.0
UA 4.9 (32.2%) 0.3 2.2 3.6 3.2
UFPR 13.0 (85.5%) 0.5 0.1 1.6 14

MRPS 11.1 (73.0%) 0.2 0.7 22 0.8
ours 12.3 (80.7%) 0.2 0.8 2.6 0.0

7.4.2 Detection - Quantitative

ABW SegComp Dataset We evaluated the plane detector on the SegComp ABW
Dataset [68], a database of 30 scenes taken with a laser scanner, and with known
ground truth. Table 7.2 shows the results of our detector, compared to prior art.
As in the original evaluation, over is the average number of oversegmentations
(more than one detected primitive for a single ground truth primitive), under is the
average number of undersegmentation (more than one ground truth primitives
for a single detected primitive), missed is the average number of undetected
primitives and noise is the average number of false positives.

Overall, our method was able to detect almost all well-behaving planes. Note
that our approach has zero noise, indicating that all of our detected planes
corresponded to a ground truth plane (no false positives). The missed planes had
a very high inclination w.r.t. to the camera, and sometimes were only a few pixels
large, making them very difficult to detect.

Synthetic Dataset We also performed an evaluation of the primitive detection
on some 1000 artificial scenes with known ground truth and added Gaussian
noise. Each scene contained 1-10 primitives, some partially occluding each other.
Fig. 7.10 shows the resulting detection rate. All well-behaving primitives that
were not too much occluded or tilted against the camera were detected.

7.4.3 Detection - Qualitative

We performed a large number of qualitative experiments on real-world data.
Scenes were acquired with different sensors, including time-of-flight sensors,
Kinect-like structured light sensors and stereo setups. Some of the results are
depicted in Figs. 7.11, 7.12, 7.13, 7.14 and 7.15.

While cylinders are detected robustly, the determination of the exact length of
the cylinders can be tricky. In some cases, the cylinder is assumed to be slightly

143



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

longer than it should be if its end is touching a different object. Other than that,
we found that all primitives were detected robustly, despite occlusions, clutter
and noise.

7.5 Conclusion

This chapter introduced a detection scheme for symmetric 3D shapes — cylinders,
spheres and planes — in 3D point clouds. For this, the parameter space of the
voting scheme of Sec. 5 was modified to take the the symmetries into account:
Redundant parameters were pruned and the scale — or radius — was added as
shape parameter. Additionally, for spheres and planes, the feature matching
is performed implicit instead of using an explicit feature database. Finally, the
refinement scheme of Sec. 4 was modified to take the implicit shapes into account
and, for cylinders and spheres, to also optimize the radius of the shape. The
experiments show that the method is robust, fast, and accurate and detects all
three object classes in challenging real-world scenes.

144



7.5 CONCLUSION

0.1 T T T T 0.1 T T T T

u » g 0014 | ]
Q > =
< 0.08 | E 5 0.08 - E & 0.012 .
Q © 1%}
< 006 = < 0.06 g 001 F
g = - g™ h § 0.008 -
‘5 0.04 | s - 5004 | - € 0.006 | .
E 2 = ? 0.004 | .
S002F _ A~ ¥— 20.02 . g
o . ‘Q.,“;»!“ ~ x ‘ g 0.002 |- —
- i 0 = 3 1 0 1 1 1 1
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
Relative Noise (0y¢) Relative Noise (0y¢|) Relative Noise (0yg)
0.1 0.1
T T T T T T ° 0014
o) g 8 12
£ 008 |- . 5008 T 500
S 106 € o6 8 0.01
g e 3 0.008
w w o
o 0.04 | s o 0.04 | — 5 0.006
= = n
® s < 0.004 | 4
© 0.02 — © 0.02 |- — 3
4 i 14 3 s 0.002 E
O 1 1 1 0 1 I 0 1 1 1
50 1000 2000 3000 50 1000 2000 3000 50 1000 2000 3000
Number of scene points Number of scene points Number of scene points
. 01 0.1
b 3 © 7
& 0.08 E go. E 8 E
— — 2]
I o [a] ]
= 006 . £ 006 - 2 |
2 2 g
£ 0.04 - 2 0.04 . < .
s =0 3
® 0.02 . % 0.02 . g
[ ® -
£ < I =
w 0 [ ol X - - ¥
0 02 04 06 08 0 02 04 06 08 0 02 04 06 08
Initial Error Initial Error Initial Error
0.1 T T T T 0.1 T LI T
= ” 100% visibility —+— ®
2008 | - 3008} 50% visibility — §
5] B 30% visibility —x— 2
o 14 10% visibility —=— a
5 0.06 E 5 0.06 1 3
i I g
© 0.04 | E o 0.04 W] T
= = (7]
® © c
© 0.02 | E © 0.02 - 1 3
o (14
e . e % ! =
O - T 1 - 1 1 0 1 1 '?‘_T? Al?‘ * 0 1 1 1 1
0O 02 04 06 08 1 0 02 04 06 038 1 0O 02 04 06 08 1
Clutter Ratio Clutter Ratio Clutter Ratio

Figure 7.5: Accuracy of the sphere refinement on synthetic data. Each graph shows
results aggregated over several thousand runs. More details and discussion can be found
in the text. From left to right: Relative center error |cyefined — Cgt|/7gt, relative radius
erTor |"refined — rgt| /Tgt, and mean relative distance of points on the ground truth sphere
to points of the refined sphere. From top to bottom: Gaussian noise on scene points,
varied scene density (at 50% visibility), varied initialization error (basin of convergence),
varied clutter point ratio (= nr. clutter points/nr. inlier points).

145



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

Final Relative Error Radius Relative Error Radius Relative Error Radius

Relative Error Radius

Figure 7.6: Accuracy of the cylinder refinement on synthetic data. Each graph shows
results aggregated over several thousand runs. More details and discussion can be found
in the text. From left to right: Relative radius error |7yefineq — 7gt|/7gt, angular error
of cylinder axis £ (drefined, agt) in degrees, and mean distance of points on the ground
truth cylinder to points of the refined cylinder. From top to bottom: Gaussian noise on
scene points, varied scene density (at 50% visibility), varied initialization error (basin of

0.16 T T T T
0.14 -
0.12 |- E
0.1 | B
0.08 - B
0.06 - B
0.04 - B
0.02 - r
e
0.02 0.04 0.06 0.08 0.1
Noise (0yg)

0.014 T T T

0.012

0.01
0.008
0.006
0.004

0.002 L L L
75 1000 2000 3000

Number of scene points

0.02 T T T T

0.018 i
0.016 | i
0.014 -
0.012 - i
0.01 - i
0.008 | i
0.006
0.004
0.002 ey
O 1 1 1 1
0 02 04 06 08 1

Clutter Ratio

Final Axis Angular Error Axis Angular Error Axis Angular Error

Axis Angular Error

0.8
0.6
0.4
0.2

0.8

0.6

0.4

0.2

0

0.8

0.6

0.8 |-

0.6

0.4

0.2

0

— 1

0.02 0.04 0.06 0.08
Noise (Ore))

0.1

1 1 1

75 1000 2000 3000
Number of scene points

0 0.1
Initial Error

0.2

'100% visibility —+—
50% visibility —<
30% visibility —x—
10% visibility —e—

[ -

1
0 02 04 06 038
Clutter Ratio

1

Mean Surface Distance Mean Surface Distance Mean Surface Distance

Mean Surface Distance

0.01

1 1
0.02 0.04 0.06 0.08 0.1
Noise (Ore)

0.008 -

0.006 [-

0.004 -

0.002 -

1 1 1

0.01

1000 2000 3000

Number of scene points

0.008
0.006
0.004

0.002 ¥f

0

0.01

0.1 0.2
Initial Error

0.008

0.006 [-

0.004

0.002 F

02 04 06 08 1
Clutter Ratio

convergence), varied clutter point ratio (= nr. clutter points/nr. inlier points).

146



7.5 CONCLUSION

Figure 7.7: Example refinement for a noisy cylinder. Top view (top), frontal view (bottom)
for the initialization (left) and the first three iterations. For quantitative details and
discussion see Fig. 7.8

100 T T T 100
Main Axis Orientation ——
10 Mean Distance ——
- Radius —— 5 10 _
g 1F dmax —5— g
i L
g 0.1 1 8
© =
o 0.01 c
@ 01 <
0.001 i
0.0001 0.01

Iteration

Figure 7.8: Residual error and maximum distance for an exemplary run of the cylinder
refinement. The refinement is depicted in Fig. 7.7. Note that the refinement converges in
around 10 steps and shows a very fast initial convergence.

0.004 T T T T 0.14 T T T T
8 0.0035 |- g 8 0.12
g 0003 ] B 3 0.1
0 0.0025 - g [} a
® o 0.08
8 0002 | - 8 3
b= = ‘£ 0.06
3 0.0015 - R 3 3
S 0.001 | . < c 0.04
2 0.0005 . 2 2 0.02
1 1 1 1 0 1 1 1 1 O
0.02 0.04 0.06 0.08 0.1 70 1000 2000 3000 4000 0O 02 04 06 08 1
Noise (o) Number of scene points Clutter Ratio

Figure 7.9: Accuracy of the plane refinement on synthetic data. Each graph shows
results aggregated over several thousand runs. More details and discussion can be
found in the text. Left: Accuracy w.r.t. Gaussian noise of the scene points. Center:
Accuracy w.r.t. the number of scene points. Right: Accuracy w.r.t. the clutter ratio
(= nr. clutter points/nr. inlier points).

147



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoinT CLOUDS

Detection Rate

=4
©

=4
=Y

o
~

o
N

o

ot
o

0.6

I I
0.7 0.8
Occlusion

Spheres

0.9

Occlusion

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

+
+
+
+
+

o+ ++++f8

8

Cylinders

Detection Rate

Occlusion

=4
o

I
~

ol+++++++

©

36 54 72
Angle

Planes

Figure 7.10: Effect of occlusion and tilt w.r.t. the camera on detection rates, averaged over
several thousand synthetic scenes. For occluding the primitives, an object was placed
between them and the camera such that this occluding object appears in the center of
the primitive. Also, at most half each cylinder and sphere was visible. For cylinders and
planes, detection rate is also plotted against the tilt of the main axis and normal vector,

respectively, w.r.t. the viewing direction.

[

Figure 7.11: Synthetic examples of the plane detection on sampled primitives, a box (top

row) with Gaussian noise on the point coordinates, and a cylinder (bottom row). Left:
Original object. Center: Sampled object (which is the input to the plane detector). Right:

Detected planes.

148

Detection Rate



7.5 CONCLUSION

Figure 7.12: Real-world example for detecting cylinders (top) and the background plane
(bottom) in an industrial setup. Top Left: Original image, showing a projected pattern
for stereo reconstruction. Top Center: Detected cylinders in the original image. Top
Right: 3D view of the detected cylinders. Note that all cylinders were detected, however,
some with a slightly wrong length. The cylinders were detected in ~ 450ms. Bottom
Left: Original depth image from a time-of-flight sensor. Bottom Center: Points on the
detected plane are marked in green. Bottom Right: 3D view of the detected plane. Note
the high amount of noise from the time-of-flight sensor, which is in the range of ~ lcm

149



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

Figure 7.13: Real-world examples for detecting spheres. The examples show heavy clutter,
occlusion, multiple instances of the target radius, and spheres of different radius. Note
that only the depth image was used for detection and that the RGB image is used solely
for visualization. Left: Original RGB image. Center: Points detected on the sphere(s).
Right: Detected sphere(s). The average detection time for the scenes was ~ 200ms
(including voting and refinement).

150



7.5 CONCLUSION

Figure 7.14: Real-world examples for detecting planes. The examples show heavy clutter,
occlusion, multiple instances and planes of different size. Note that only the depth image
was used for detection and that the RGB image is used solely for visualization. Each pair
shows the original RGB image and the detected plane segments. The average detection
time for the scenes was ~ 200ms (including voting and refinement).

151



CHAPTER 7: PRIMITIVE SHAPE DETECTION IN 3D PoIinT CLOUDS

Figure 7.15: Real-world examples for detecting cylinders. The examples show heavy
clutter, occlusion, multiple instances of the target radius, and cylinders of different radius.
Note that only the depth image was used for detection and that the RGB image is used
solely for visualization. Left: Original RGB image. Center: Points detected on the
cylinders(s). Right: Detected cylinders(s).

152



Deformable 3D Object Detection in
3D Point Clouds

Besides the detection of rigid and primitive objects introduced in the previous
chapters, some applications require a detector that can deal with deformable
objects, such as parts made from soft plastics, or with object classes that exhibit
intra-class variations, such as bakery products or fruits. This chapter introduces a
method that detects such deformable objects in 3D point clouds and that returns
a consistent set of weighted correspondences between a reference model and the
scene.

The proposed method generalizes well over different object classes and re-
quires no explicit deformation model. Most parameters can remain constant over
a large range of objects, making the method general and easy to use. In terms of
performance, we obtain sub-second runtimes on large scenes.

Parts of this chapter were previously published in [43].

8.1 Introduction and Related Work

Like the previous approaches, the method is based on the voting scheme intro-
duced in Sec. 5. However, the method is modified in two ways:

1. The point pair database is extended to include possible deformations of
all point pairs. Instead of storing only the point pair features of a single
rigid model, the features of possible deformations are stored. We will show
how this allows training of deformations without a model, based on a few
examples only.

2. The voting is done for all reference points simultaneously, which allows to
perform an iterative voting, where the scores from the previous iteration are
used as votes in the next voting round. This amplifies consistent correlations.
The iterative voting is modeled as a power iteration on a graph adjacency
matrix.

153



CHAPTER 8: DEFORMABLE 3D OBjECT DETECTION IN 3D PoinTt CLOUDS

The detector is designed for small- to medium-range deformations. In particular,
strong articulated motions, such as humans, would be computationally too
expensive.

Note that this chapter concentrates on the recovery of approximate, but
consistent scene-model-correspondences. Additional model and deformation
dependent refinement steps, such as deformable ICP or model fitting, are not
performed. We evaluate the approach quantitatively and qualitatively on synthetic
and real-world datasets, showing its generality, performance and robustness.

Chui and Rangarajan [32] approached the point correspondence problem in
2D using their TPS-RPM framework that can deal with outliers and uses thin-
plate-splines as deformation model. However, their approach was demonstrated
on artificial 2D data only. It does not scale well to 3D data with large amounts of
clutter due to the worst-case performance of O(N?3). Anguelov et al. [3] solve the
correspondence problem in 3D using a joint probabilistic model that preserves
local geometry. Their method shows very good results when registering meshes
of humans using a deformation model that preserves geodesic distance. While
the two preceding methods are able to register deformed variants of point clouds,
they are unable to deal with larger amounts of outliers, clutter, noise, or occlusion.
They are also limited to a single or few deformation models. Those restrictions
make the approaches unsuitable as generic 3D deformable object detectors.

Ruiz-Correa et al. [113] proposed a deformable shape detector that uses a
symbolic representation of shape components to represent and detect deformable
objects. Their method can deal with occlusion and noise, and generalizes well
over different deformation models in a “learn by example” way similar to our
proposed approach. However, they report runtimes of over 12 minutes, making
their method impractical for real-world applications.

The usage of graph matching algorithms in Computer Vision has a long tradi-
tion. An extensive overview is given by Conte et al. [36]. Graph matching allows
a robust localization of deformed objects and is a promising method for such
a challenge. While it has been shown extensively to work in 2D applications,
its applications in 3D are mostly limited and restricted to artificial perfect-data
scenarios (see, for example, Duchenne et al. [48]). Berg et al. [14] model the
assignment problem as an Integer Quadratic Programming (IQP) problem and
use a thin-plane spline for post-processing and outlier removal. Leordeanu and
Hebert [82] proposed a relaxation of the binary assignment problem, showing
that it is orders of magnitudes faster and more robust than IQP. The graph
structure in our proposed method is based on their graph, where vertices rep-
resent point-to-point assignments, while edges connect geometrically consistent
assignments. They also show the connection between the energy optimization
and the eigenvector problem of the adjacency matrix. However, they performed
no evaluation of the method with deformable 3D models.

Recently, hypergraphs were used for efficient image and point cloud regis-

154



8.2 METHOD

tration. Zass and Shashua [157] proposed to use hypergraphs to model more
complex relations between two feature sets. Chertok and Keller [25] build upon
that work and show efficient hypergraph matching for 2D images. Duchenne et
al. [48] use higher-order relations for the graph creation, showing good results
in both 2D and 3D. However, they evaluate only on perfect 3D meshes and
show no quantitative results in 3D. Also, their creation of the adjacency matrix
is expensive and makes their method impractical for real-world applications.
Leordeanu et al. [83] proposed a new hypergraph matching algorithm, which they
use to efficiently register images that contain deformations. Lee et al. [81] extend
a random walk strategy to hyper-graphs and can include similarity measures of
arbitrary orders. They outperform other methods in 2D when matching feature
points in 2D images.

Several of the mentioned methods require feature point detectors and were
applied on 2D image data only. While robust feature point detectors in 2D are
available, 3D data often exhibits too little distinctive geometry for robust salient
point or feature point extraction. The method proposed in this chapter thus uses
a all-to-all matching that does not require feature point extraction.

Other approaches deal with shape retrieval, i.e., the identification of 3D point
clouds or meshes. Passalis et al. [109] use a wavelet representation of objects for
efficient shape retrieval in large databases. Mahmoudi and Sapiro [86] identify
point clouds based on the distribution of several intrinsic measurements on that
cloud, such as geodesic distances. While those approaches generalize well to rigid
and non-rigid object classes, they require the objects to be segmented, making
the approaches unsuitable for scenes with large amounts of clutter.

8.2 Method

Contributions The method is based in parts on the graph model and matching
framework of [82] and [48]. However, we tailor those methods to 3D and to
increase their efficiency. In detail, the contributions are:

* The allowed range of deformations is learned based only on observed
example deformations. It requires no explicit model and works with only a
few examples, making the method easy to use.

* Our vertices represent not only correspondences between two 3D points,
but full rigid 3D transformations using the local coordinates introduced in
Sec. 5.3.3. This improves the graph’s discriminative power.

* The graph is constructed sparsely, using an initial single-round voting to
remove a large set of unlikely scene-model-correspondences a priori. This
improves the matching performance.

155



CHAPTER 8: DEFORMABLE 3D OBjECT DETECTION IN 3D PoinTt CLOUDS

* Finally, we extract the most dominant consistent subgraph using a novel
method that is efficient, requires no model, and is virtually parameter free.

Notation and Input Both model and scene are subsampled uniformly to avoid
any bias from different point densities throughout the point clouds. In practice,
we use sampling distances between 3% and 5% of the model’s diameter. We
denote m; € M for points on the sampled model and s; € S for points on the
sampled scene surface. Both point clouds are oriented, i.e., each point has a
normal associated with it. The objective is to find a deformed instance of the
model in the scene by giving consistent correspondences between scene and
model points. Due to occlusion, clutter, and noise, not every scene point has a
corresponding model point and vice versa. In the literature, this is sometimes
called the correspondence problem or the assignment problem.

Overview In order to find these correspondences, we build a graph G = (V,E),
where each vertex v € V represents a possible correspondence between a scene
point and a model point. This chapter sometimes uses vertex and correspon-
dence interchangeably. An edge e = (v1,v2) € E indicates that some non-rigid
transformation exists such that both correspondences v; and v; are aligned si-
multaneously. In other words, vertices that represent consistent correspondences
are connected. This graph model is based on [82]. If an instance of the model is
present in the scene, the graph’s vertices that connect the visible model points to
their ground-truth scene points will be connected and form a dense subgraph of
G. We will extract the most dominant such subgraph and thus recover consistent
model-scene-correspondences.

8.2.1 Model Generation

Feature and Database. As for the rigid matching in Sec. 5, we use oriented point
pairs (Sec. 5.3.1), which are discretized and stored in a hash table (Sec. 5.3.2).
However, we store all deformed variants of each point pair in the database. To
counter the corresponding increase in memory, the discretization steps of angles
and distances are increased. Formally, F(m;, m,) denotes the point pair feature
of two points m;, m, € R and H(F) the entries in the hash table H.

Deformation Model. Real-world object classes exhibit a large variety of different
deformations. Modeling all or even most of them is difficult, as is the selection
and parametrization of such a model by the user. In order to be independent from
any particular deformation model, we learn the range of possible deformations
based only on registered examples M, My, ..., M, given by the user. With this
approach, no explicit model is required.

156



8.2 METHOD

Figure 8.1: Graph matching results when parametrizing vertices with correspondences
only (left) or with correspondence and rotation angle (right). The right side has signifi-
cantly more correct correspondences and leads to a correct match.

We write m¥ € My as position of model point m; in the deformed example
M. For each pair (m;, m;) € M?2, we first collect all its deformations

D(m;, m;) = {(mi-‘,m;‘) tk=1,...n} (8.1)
from the provided examples. We then form all convex combinations between
two features in D, and add all those combinations to the database. Note that the
discretization of the feature vectors adds a small range of possible deformations,
since variations that do not change the discretized value do not affect the value
retrieved from the hash table.

Note that for large-scale deformations, it might be of advantage to learn the
manifold on which each point pair is moving, rather than taking the convex hull
of the point’s locations. However, this was not further explored in this work.

8.2.2 Vertex Parametrization

Motivation Our graph models correspondences between model and scene points.
In 2D, a single point-to-point correspondence completely captures a rigid motion,
assuming that normal vectors or gradients are available. In 3D, however, a single
correspondence misses one degree of freedom: After aligning a scene and a model
point as well as their normal vectors, one can still rotate around the normal vector.
Using correspondences only is thus an underparametrization of an underlying
rigid motion. For graph matching, this has the effect of aggregating vertices and
thus probably introducing undesired cliques, making it more difficult to extract
the correct correspondences.

157



CHAPTER 8: DEFORMABLE 3D OBjECT DETECTION IN 3D PoinTt CLOUDS

Solution To mitigate this effect, we explicitly include the rotation around the
normal in the vertex parametrization. Each vertex in the graph then represents
not only two corresponding points s, m, but also a rotation angle a around
the normal vector. (m,«) are also called the local parameters w.r.t. s (compare
Sec. 5.3.3). Together with the normals, these parameters completely parametrize
a rigid transformation T. Formally, we follow Sec. 5.3.3 and define T as

T(s,m,a) = Ts® Re(a) Ty (8.2)

where Ts_,¢ € SE(3) is a transformation with Ts_,(s) = 0 and R(Ts_,g)(ns)) =
(1,0,0)T, Ty is a corresponding transformation for m and Ry(a) is a rotation
around the x-axis with angle . Note that Ts_, and Tj;_,¢ are not unique. We
instead precompute one of the possible transformations for each scene and model
point and keep it fixed.

For discretization, the rotation angle a is sampled in d intervals, such that
each vertex can be parametrized as S x (M x {0,1,...,d — 1}). The number of
vertices in the full graph is then |S||M|d.

Discussion Note that the degrees of freedom introduced by the deformations are
not captured by this parametrization. We found that the proposed parametriza-
tion is only slightly slower but significantly more robust in 3D. Fig. 8.1 shows an
example of how the extracted correspondences change when adding the angle to
the parametrization.

8.2.3 Graph Creation and Local Voting Scheme

Handling a graph with |S||M|d vertices can become computationally expensive
for larger scenes. In order to improve the matching speed, we prune the graph
based on the results of the local voting scheme of Sec. 5, thus effectively removing
parts that we deem unlikely to be relevant. Fig. 8.2 outlines the graph creation.

Contrary to Sec. 5, we perform the voting for all reference points simultane-
ously. For each model point pair that matches a scene point pair, we obtain the
symmetric parameter a; and cast a vote for reference point s, at (mp, ay). The
two corresponding nodes of the graph, (s1, mj, a1) and (sp, my, ay), are connected
with an edge, since they can both be fulfilled simultaneously. We create a sparse
graph by adding only those vertices that have a high voting score. This removes
vertices and edges that are unlikely to be a part of the object. In practice, for each
scene reference point, we use the references with the highest 3% of voting scores.

Note that since the threshold is applied after the voting and before the actual
graph creation, the removed vertices and edges are never actually created in
memory. Instead, the graph is created as follows:

1. Perform the voting scheme for each scene point s € S as reference point and

158



8.2 METHOD

tind the peaks in the accumulator array (see Sec. 5.3.6). For each peak entry
(m, «), create the graph vertex v = (s,m,«) and add it to V.

2. Create the graph’s edges by checking, for each pair of vertices (v, v;), if
any of the trained deformations of the model point pair (m(vy), m(vy))
is equal to (s(v1),s(v2)), and if the corresponding rotation angles match.
This effectively checks if a deforming transformation exists that fulfills the
correspondences of both vertices.

The left images in Fig. 8.7 show an example of the pruned graph creation. For
a full graph, each model vertex would be connected to each scene point. For our
pruned graph, only a small subset of those connections remains. As outlined in
Fig. 8.1, the pruning step improves the runtime of the graph matching by several
orders of magnitude.

Note that our approach is an effective alternative to using feature point
descriptors to find potentially matching scene and model points: Instead of
computing such features for both point clouds and comparing them, we use the
voting to detect potentially similar points.

8.2.4 Graph Matching

In the following, we follow the notation of [48]. The challenge is to find an
assignment vector X € {0,1}V, where X, = 1 if the scene and model point
represented by v correspond and X, = 0 otherwise. This problem is relaxed, i.e.,
we allow continuous values for the assignments, and write X € (R+)V for the
relaxed assignment vector.

The relaxed assignment is modeled as an energy optimization problem

X* = argmax Z X, Xo, (8.3)
1X]=1 e=(v;,v;)€E

Intuitively, an active vertex only contributes positively to the total energy if it is
connected to another active vertex. Since the total amount of activations is limited
through |X| = 1, the energy is maximized if the activated vertices are strongly
connected.

In terms of the graph’s adjacency matrix A = (w; ;), (8.3) becomes

X* = argmax Z w; j Xo, Xo; (8.4)
X|=1 ijeV
= arg max XTAX (8.5)
X|=1

Note that for the normalization | X| = 1, any norm can be used, since we will use
the relative values of X only. The problem is then a scaled Rayleight quotient
problem [82, 48], and X* is an eigenvector associated to the largest eigenvalue of
A.

159



CHAPTER 8: DEFORMABLE 3D OBjECT DETECTION IN 3D PoinTt CLOUDS

01 = (mll X1, Sl)
[ ]

evl ;02

® . %y =(myaysy)

Scene S Model M Graph G = (V,E)

Figure 8.2: Graph Construction. From left to right: For each scene point pair (si,s2),
F is computed. The hash table returns a list H(F) of all model point pairs that can
be deformed to match (sq,s2). Right: Each vertex v in the graph represents a possible
correspondence between a scene and a model point. Edges are created between vertices
that are consistent, i.e., a deformable transformation between scene and model exists that
fulfills both correspondences: For each match (m;, my) € H(F), an edge is created.

We solve the optimization problem through gradient descend. X? is initialized
to all ones, the update step is
AXF
k+1 _ S (8.6)
[AXH
This is equivalent to the power iteration that has proven convergence against an
eigenvector of the largest eigenvalue of A.

Voting Scheme Interpretation The iteration (8.6) can also be seen as a repeated,
re-weighted voting scheme: In the first step, each vertex votes for all connected
vertices with a weight of 1, such that X}) is the degree of v, i.e., the number of
connected edges. In subsequent steps, each vertex v votes again for all connected
vertices, but this time with the number of votes it received in the last round,
instead of 1. Through this feedback cycle, vertices of a strongly connected
subgraph amplify each other, while the values of weakly connected vertices
decrease due to normalization. With this interpretation, the graph pruning is
equivalent to performing the first iteration of (8.6) on the full graph and then
removing vertices with low scores.

8.2.5 Dominant Consistent Subgraph Extraction

The power iteration returns a vector of weights X* for vertices or scene-model
correspondences. However, even though the correct correspondences obtain
high weights, there is no guarantee that all incorrect correspondences have very
low weights. When performing a simple threshold on X*, outliers as well as
non-unique correspondences, i.e., two or more connections to a model or scene
point, might be included. If more than one instance of the object with similar size
is present in the scene, their correspondences might be mixed together, having

160



8.2 METHOD

0.8 - 1

0.6 - 1

0.4 . . B
0.2 - 1 . E
0 — 4 0 1 1 1 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Score X Score X

Distance
TPR

Figure 8.3: Correlation between the weight X and the correctness of a correspondence.
Left: Average distance of a corresponding scene point from the ground truth scene point,
relative to the diameter of the model. Right: Ratio of correct correspondences w.r.t. the
score X.

correspondences of both instances with high scores. An additional step must
thus be performed to ensure that the correspondences are consistent.

In [82], a greedy approach for extracting the most dominant, consistent dense
subgraph was proposed. For this, starting with the strongest correspondence
v*, the strongest remaining correspondence that does not contradict any previ-
ously added correspondences is added iteratively. However, this approach is
computationally expensive since many consistency checks must be performed.
Additionally, it requires a strong deformation model, which is not available to
us. [48] modeled the optimization based on the /;-norm, giving an almost binary
correspondence vector, which is easier to threshold. However, we found that this
approach has a slower convergence and tends to drop correct nodes.

We instead use a simple greedy subgraph extraction. Similar to [82], we use
the strongest correspondence v* = arg max, ., X*(v) as anchor, assuming that it
is correct. All other vertices v are weighted based on their distance to v*, and on
the weights of the vertices on the shortest path between v and v*. Formally, let

P(vg,vp) = {(va,v1,02,...,0;,0p) : (vg,01), (v1,02),...(v;,vp) € E} (8.7)
be the set of all paths between v, and v;,. The weight X, of v is then

X, = ma aX, 8.8
v pEP(U?é*) H v (8.8)

v'ep

where 0 < a < 1 is a damping factor that additionally downweights vertices
further away from v*. The intuition behind « is that even though the subgraph
of interest is not fully connected, it is dense such that its vertices are connected
with short paths. Vertices far away from v* are thus less likely to be part of the
desired subgraph. In all our experiments, we set « = 0.5.

To avoid double-correspondences of scene or model points, if a scene of
model point is part of two or more extracted correspondences, we only keep
the correspondence with the highest value in X. We found that such double-
correspondences mostly connect two neighboring points of one set to a single

161



CHAPTER 8: DEFORMABLE 3D OBjECT DETECTION IN 3D PoinTt CLOUDS

point in the other set, a result of the allowed deformation. In practice, we limit
the length of the paths to 4. This aids performance: starting with v*, only a
small part of the graph must be explored. We also threshold the correspondences,
keeping only those with X, > tx = 0.05.

The result of this method is a new set of vertex weights X that can be seen as
a consistent soft assignment between model and scene points. It thus keeps the
idea of soft, weighted assignments over hard, binary ones, but is more likely to
be consistent. X can then be used to initialize a deformable refinement.

Fig. 8.3 further motivates this approach. It shows the correlation between
the score X, and the correctness of the correspondence represented by v for
an example scene, using « = 1. Note that for scores larger than ~ 0.3, the
correspondences are almost exclusively correct. The method successfully re-
computes votes to recover consistent subgraph that follows the most dominant
correspondence.

8.3 Experiments

We evaluated the proposed approach with several quantitative and qualitative
experiments. Synthetic and real data with available ground truth was used for
the quantitative evaluation, while the qualitative experiments were performed on
a real dataset only.

Note that all parameters were kept constant over all experiments, showing the
method’s robustness w.r.t. its parameters. Model and scene were subsampled
with distance 3% of the model’s diameter. For the hash table, the distance of
feature F was quantized in steps of 5% of the model’s diameter, while angles were
quantized in steps of 12°. Fig. 8.5 motivates the choice for the distance sampling
parameter, which is a tradeoff between matching accuracy and matching speed.
For each scene, 10 iterations of (8.6) were performed.

The method was implemented in C, timings were measured on an Intel Core
i5 with 3.33 GHz and 16 GB RAM. The offline learning phase, i.e., creation of the
hash table H, took less than 1 minute for all objects. Feature matching required
0.05 to 2 seconds, the power iterations 0.1 to 2.5 seconds, depending on the
complexity of the scene and the amount of clutter. Timings for the remaining
steps, such as scene sampling and greedy dense subgraph extraction, were
negligible. We believe that an improved implementation and a better control over
the number of iterations would significantly improve the runtime.

8.3.1 Quantitative

Synthetic data A first set of experiments was performed on synthetic data, where
ground truth is available. We selected three different objects with different surface
characteristics: a clamp and a pipe joint from MVTec and the Stanford Bunny [124]

162



8.3 EXPERIMENTS

Table 8.1: Effect of matching with a sparse graph using the local voting scheme for the

scene shown in Fig. 8.7

|S| | M| | Vertices |V| | Edges |E| | Runtime
Dense | 13106 | 300 135.566 | 98.886.050 | 1163.6 s
Sparse | 13106 | 300 34.095 42.832 11s

Table 8.2: Average precision, recall, and relative error of the returned correspondences
for the synthetic scenes

Model Precision | Recall | Rel. Error
Clamp 0.93 0.57 3.6%
Pipe joint 0.99 0.69 2.2%
Bunny 0.96 0.51 4.1%

(Fig. 8.4, top). For each object, 100 scenes were rendered with different amounts of
clutter, occlusion, and deformation (Fig. 8.4, bottom). The objects were deformed
using free-form deformation [125]. For training, 10 deformed instances of each
object, which were not part of any of the evaluation scenes, were used.

We measure the performance of the method in terms of precision, recall, and
error of the recovered correspondences. A recovered correspondence is a true
positive if its scene point is on the object and its model point is at most 10% away
from its ground truth position. The relative error measures for each true positive
correspondence the distance of the corresponding model point to the ground
truth model point, divided by the diameter of the object.

Tab. 8.2 shows the average results for the three objects. The recovered corre-
spondences show a very high precision, indicating that most of the recovered
correspondences were correct. The average recall is larger than 0.5, meaning that
on average more than half of the correct correspondences were recovered. We
believe that those are enough correspondences to initialize a deformable ICP.

Real data We further evaluated our approach on the dataset of Mian et al. [92, 93]
(compare Sec. 5.4.2). Since the objects of that dataset are rigid, we trained with a
single model only. Fig. 8.6 shows the detection rates w.r.t. the occlusion of the
objects. See also Fig. 5.23c.

Note that even though the objects are rigid, detection still benefits from using
our graph approach, as is evident from the fact that we exceed the baseline
method of Sec. 5, which we use to initialize our graph. This shows that multiple
iterations of the voting, as discussed in Sec. 8.2.4, lead to a more robust result.
We also outperform several other state of the art methods. Note that the dataset
is in practice maxed out, as only 7 object instances remain undetected. Those
instances are almost completely occluded and difficult to detect even by humans.

163



CHAPTER 8: DEFORMABLE 3D OBjECT DETECTION IN 3D PoinTt CLOUDS

Figure 8.4: Top: Objects used for the synthetic tests (clamp, bunny, pipe joint). Bottom:
Example scenes of the synthetic dataset, showing clutter and deformation.

8.3.2 Qualitative

We evaluated the proposed method on a set of real-world scenarios. Over 50
scenes containing pretzels, bananas, caps, stressballs and a silicone baking mold
were acquired using both an industrial stereo sensor and a Primesense RGB-D
sensor and matched against the corresponding model. Note that since the stereo
sensor does not return an RGB-image, its scenes are visualized in 3D only.

For training, several deformed instances of each object were acquired, manu-
ally segmented and registered using deformable ICP [101]. We used only 5 to
15 examples for each class for the training, showing that the method is able to
generalize from only few examples.

Fig. 8.8 and 8.9 show several example scenes. Tab. 8.7 shows on two examples
how the graph creation leads to a sparse graph and how the graph matching
extracts a consistent set of correspondences from that graph. The effect on the
computational costs are shown in Tab. 8.1.

Overall, we found that the method performs very well even in cases of severe
clutter, occlusion, and noise.

8.4 Conclusion

This chapter introduced a deformable 3D object detection scheme that generalizes
well over different object classes and requires only few parameters. The graph
matching scheme of [82] was extended by augmenting the correspondences with
another parameter, making them more expressive in 3D. We prune the graph by

164



8.4 CONCLUSION

0.3

T
Runtime
Error —%— 0.45

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

0.25

Time for matching (s)
o
o
Error

0.04 0.08 0.12
Distance sampling factor

Figure 8.5: Effect of changing the distance sampling parameter of the feature database
for an exemplary synthetic scene. Matching accuracy and robustness drops significantly
when sampling with more than 0.1, while matching time raises significantly when
sampling with less than 0.05. In practice, we use 0.05 over all our experiments.

0.8

0.6

04

Recognition rate

Deformable method —+—
02+ Tensor matching, Mian
: Spin images, Johnson & Hebert —%—
Rigid voting (Sec. 5) —&—
O 1 1 1 1 1
65 70 75 80 85

Occlusion

Figure 8.6: Detection results on the dataset of Mian et al. [91]. Our approach exceeds
the rigid baseline method of Sec. 5 and successfully detects 96.3% (181 of 188) of all
objects, and 98.8% (168 of 170) of objects with less than 84% occlusion. The deformable
method also outperforms spin images of Johnson and Hebert [75] and the tensor voting
of Mian et al. [92].

using the method of [46] to create only a sparse set of correspondences that are
likely to be correct. Using 3D point pairs makes the method invariant against
any rigid 3D transformations. Finally, a greedy dense subgraph extraction is
proposed to recover a consistent set of correspondences, which can be used to
obtain an approximate rigid transformation or to initialize a deformable ICP.

The method can also be seen as an extension of the voting scheme of Sec. 5
into an iterative, re-weighted voting scheme.

Our experiments show that the proposed method is able to robustly detect
rigid and non-rigid objects in challenging 3D point clouds despite heavy clutter
and partial object occlusion. They also showed how the combination of all
possible deformations can be learned based on only a few deformed training
samples. For rigid objects, we outperform prior art.

165



CHAPTER 8: DEFORMABLE 3D OBJjECcT DETECTION IN 3D PoinT CLOUDS

A i

Figure 8.7: Graph matching examples. Left: Initial correspondences, created by thresh-
olding the results of the local voting scheme. Each correspondence is a vertex in our
graph. Center: Correspondences extracted after graph matching by the greedy subgraph
extraction. Note that only a consistent set of correspondences from the original set of
correspondences remains. Right: The correspondences were transformed into a rigid
transformation. The matching was performed on the depth image only, while the RGB

image is used for visualization only.

166



8.4 CONCLUSION

Figure 8.8: Qualitative graph matching results on scenes acquired with a Primesense
sensor. Top: Scenes and recovered correspondences. Bottom: Rigid transformation of the
base model. The transformation was recovered from the correspondences. Note that for
stronger deformations that were not trained, still enough correspondences were found
for an approximate matching (rightmost scene).

Figure 8.9: Qualitative results on scenes acquired with a stereo sensor. Challenges include
clutter, occlusion, multiple instances, and strong deformations. The rightmost scene
shows the model (bottom) and fitted result (top).

167



CHAPTER 8: DEFORMABLE 3D OBjECT DETECTION IN 3D PoinTt CLOUDS

168



Conclusion

9.1 Summary

This thesis tackled the challenge of developing 3D machine vision algorithms
that allow solving a large variety of real-world problems arising in industrial
and robotic settings. The algorithms were developed with the requirements of a
generic industrial machine vision library in mind and are generic, easy to use
and to parametrize, work with data from different sensors and with different
characteristics, are fast, robust, and accurate.

The main contributions of this thesis are

* anovel, high-performance 3D nearest neighbor algorithm that allows lookups
in almost constant time (O(loglog N) for a target cloud of N points). The
lookup times are in particular almost independent of scene and query point
distributions. The method outperforms state-of-the-art methods such as the
k-d-tree and the ANN and FLANN libraries;

* an industrial-grade implementation of ICP that is generic, robust, fast,
accurate and easy to use;

* a novel rigid 3D object detection framework that employs a voting scheme
on a local, data-driven parameter space using point pairs as features. The
voting is wrapped in a detection pipeline that removes duplicates and further
refines, verifies and rates the results. The framework allows detecting objects
of any shape and is fast, accurate, and robust against even large amounts
of clutter, noise, and occlusion. Detection times of 190 ms for 10 object
instances, including refinement, enable manipulation tasks such as bin-
picking as well as inspection tasks such as surface comparisons;

* an adaption of the baseline voting scheme to multimodal data, such as
RGB-D images, that simultanously matches the 3D surface and the 2D
sillhouette of the object by combining both into a novel, multimodal feature;

169



CHAPTER 9: CONCLUSION

* an adaption of the baseline voting scheme to primitive 3D shapes — planes,
spheres, and cylinders — that uses the intrinsic symmetries of those shapes
to further reduce the parameter space and to improve the feature matching.
Additionally, an adaption of the ICP method robustly refines these primitives
in the scene point cloud;

* an adaption of the baseline voting scheme to deformable objects that uses
the voting and the local parametrization to enable a robust and efficient
graph matching in 3D.

When combined, these methods allow solving a large variety of real-world
problems such as bin picking, 3D surface inspection and defect detection, robot
navigation, and others.

Several of the methods developed in this thesis were implemented in the
machine vision library HALCON [100] and are used in industrial and robotic
installations worldwide.

9.2 Dependent Work

At the time of finishing this thesis, several other methods were published that
use or extend the object detection algorithms developed in this work.

Applications Salas-Moreno et al. [118] introduced the simultaneous localization
and mapping algorithm SLAM++, which, among other contributions, parallelizes
the voting proposed in Sec. 5 on a GPU. They collect the votes in lists by aug-
menting the accumulator space index with the scene point index. The lists are
sorted, and the number of repetitions of a particular entry equals its number of
votes. Chliveros et al. [26] use the rigid detector to initialize a tracking process.
Beetz et al. [11] use the rigid detector to locate the cooking tools held by a robot
in a kitchen environment. Klank et al. [79] embed the rigid detection method in
a robotic framework that automatically evaluates different detection methods,
allowing the robot to select the best performing method based on object, sensors
and context.

Pipeline Modifications Similar to Sec. 7, de Figueiredo et al. [37, 38] extend the
rigid detection method to solids of revolution by exploiting the symmetries of
such shapes to reduce the parameter space and to improve the feature training
and matching.

Skotheim et al. [127] extended the rigid detection pipeline twofold. For pre-
processing, outlier points are removed from the scene before the matching. For
post-processing, the detected poses are verified using given constraints that limit
the set of possible poses. For example, certain objects would always be expected

170



9.2 DEPENDENT WORK

to stand upright or to be on a table. The poses are further verified by rendering
them in an artificial depth image and comparing that rendering to the depth
image that represents the scene.

Tutzel et al. [147] proposed to weight the different point pairs depending on
their significance for the result. For example, for almost symmetric objects, point
pairs where one of the points lies on the object part that breaks the symmetry
would vote with a higher weight, which helps to find the correct among similar
poses. The weights are obtained such that the detection is optimized over several
scenes with known ground truth.

Birdal and Ilic [17] also proposed a re-weighting of the point pairs. However,
they do so in a scene-independent way, giving stronger weights to points in more
planar areas whose normals are more robust and repeatable to compute. This
aids both accuracy and detection performance. Additionally, they pre-segment
the scene such that objects are unlikely to be part of two segments simultaneously,
allowing again for a faster and more robust voting. Finally, they add a more
sophisticated hypothesis verification that takes visibility constraints into account.

Point Pair Feature Extensions Several other approaches modify the point pair
features in various ways. Kim and Medioni [77] proposed to extend the 3D
point pair feature with a visibility context that indicates if a point pair can be
visible in a certain configuration. Additionally, the add information about the
visible boundary of the object to the point pairs, effectively building a viewpoint
dependent point pair that matches both surface and contour. Choi et al. [29]
proposed to detect and use edges and line segments in range images, and to
form point pair features that include those edges or line segments. This is similar
to the multimodal features described in Sec. 6. It is, however, limited to range
sensors that provide very accurate information at edges and to objects that have
articulated edges.

Choi and Christensen [27] modify the method of Sec. 5 by extending the 3D
point pair feature with information about the color of the two points. They later
parallelize the method on the GPU [28] and perform an extensive evaluation,
showing improved performance on multimodal data when detecting colored
every-day objects. Similar, McElhone et al. [89] augment the 3D point pair feature
with local color information and extend the rigid object detector to multiple
resolutions. Nguyen et al. [102] use a different variant of the point pair feature
of Sec. 5.3.1 that resolves the mirroring ambiguity. They also compare normal
directions between scene and aligned model to evaluate and verify matches.

171



CHAPTER 9: CONCLUSION

9.3 Future Work

While the proposed methods are important building blocks for solving many
industrial applications, many more remain.

The multimodal detection method of Sec. 6 would benefit from a refinement
method that simultaneously refines both the 3D surface overlap and the alignment
of 2D edges. This would help to properly align planar objects that can otherwise
slide when using point-to-plane metrics. Similar, a parameter and model free
deformable refinement that allows sparse initialization would help to further
improve the results of the deformable detections of Sec. 8.

Another often required method is the detection and fitting of 3D boxes in
3D or multimodal data. Such methods can be used for several applications
in warehousing and logistics, such as automatic unloading of containers and
trucks, stacking and packing of boxes for further transportation or storage, or
quality inspection of boxes. The main challenges are the larger number of shape
parameters (the three dimensions of the box), possible deformations such as bent
sides, problematic viewpoints where only one or two sides are visible, and the
fact that for a proper determination of the dimensions, edges must be taken into
account unless multiple sensors are used.

Another challenge is the simultaneous classification and detection of multiple,
potentially deformable or non-rigid, different objects in a scene. Applications
include warehousing, where a robot sees multiple objects at once which need to be
identified, robotics in less structured environments, where scene understanding
is helpful for operational planning, and retail and logistics, where unordered
piles of different objects need to be classified or sorted.

172



[1]

2]

3]

[4]

[5]

Bibliography

SUNG JOON AHN, IRA EFFENBERGER, SABINE ROTH-KOCH, AND ENGELBERT
WESTKAMPER, Geometric Segmentation and Object Recognition in Unordered and
Incomplete Point Cloud, in Pattern Recognition, 25th DAGM Symposium,
Magdeburg, Germany, September 10-12, 2003, Proceedings, Bernd Michaelis
and Gerald Krell, eds., vol. 2781 of Lecture Notes in Computer Science,
Springer, 2003, pp. 450-457.

A1TOR ALDOMA, FEDERICO TOMBARI, LUIGI DI STEFANO, AND MARKUS
Vinczg, A Global Hypotheses Verification Method for 3D Object Recognition, in
Computer Vision - ECCV 2012 - 12th European Conference on Computer
Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part III, Andrew W.
Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia
Schmid, eds., vol. 7574 of Lecture Notes in Computer Science, Springer,
2012, pp. 511-524.

DRAGOMIR ANGUELOV, PRAVEEN SRINIVASAN, HOo1-CHEUNG PANG, DAPHNE
KOLLER, SEBASTIAN THRUN, AND JaAMES Davis, The Correlated Correspondence
Algorithm for Unsupervised Registration of Nonrigid Surfaces, in Advances in
Neural Information Processing Systems 17 [Neural Information Processing
Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia,
Canada], 2004, pp. 33—40.

SUNIL ARYA, DAVID M. MOUNT, NATHAN S. NETANYAHU, RUTH SILVERMAN,
AND ANGELA Y. Wu, An Optimal Algorithm for Approximate Nearest Neighbor
Searching Fixed Dimensions, Journal of the ACM (JACM), 45 (1998), pp. 891-
923.

MAaRrco ATTENE, BiIANCA FALCIDIENO, AND MICHELA SPAGNUOLO, Hierar-
chical mesh segmentation based on fitting primitives, The Visual Computer, 22
(2006), pp. 181-193.

173



BIBLIOGRAPHY

[6] W. W. Rousk BaLL, Mathematical Recreations and Essays, Macmillan, New
York, 1892.

[7] DaNA H. BALLARD, Generalizing the Hough transform to detect arbitrary shapes,
Pattern Recognition, 13 (1981), pp. 111-122.

[8] PraBIN BarRiYA AND KO NISHINO, Scale-hierarchical 3D object recognition in
cluttered scenes, in The Twenty-Third IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June
2010, IEEE Computer Society, 2010, pp. 1657-1664.

[9] NORBERT. BAUER, NORBERT. ALBRECHT, AND FRAUNHOFER-ALLIANZ VISION.,
Guideline industrial image processing, Fraunhofer-Allianz Vision, Stuttgart,
2003.

[10] ALBErT E BEATON AND JoHN W Tukey, The fitting of power series, meaning
polynomials, illustrated on band-spectroscopic data, Technometrics, 16 (1974),
pp. 147-185.

[11] MicHAEL BEeTZ, ULRICH KLANK, INGO KRESSE, ALEXIS MALDONADO, LORENZ
MOSENLECHNER, DEJAN PANGERcCIC, THOMAS RUHR, AND MORITZ TENORTH,
Robotic roommates making pancakes, in 11th IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids 2011), Bled, Slovenia, October
26-28, 2011, IEEE, 2011, pp. 529-536.

[12] RicHARD ERNEST BELLMAN, Adaptive control processes: a guided tour, vol. 4,
Princeton university press Princeton, 1961.

[13] Jon Lours BENTLEY, Multidimensional Binary Search Trees Used for Associative
Searching, Communications of the ACM (CACM), 18 (1975), pp. 509-517.

[14] ALEXANDER C. BERG, TAMARA L. BERG, AND JITENDRA MALIK, Shape Matching
and Object Recognition Using Low Distortion Correspondences, in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005), 20-26 June 2005, San Diego, CA, USA, IEEE Computer Society,
2005, pp. 26-33.

[15] Paul J. BEsL AND RaMESH JAIN, Three-Dimensional Object Recognition, ACM
Computing Surveys (CSUR), 17 (1985), pp. 75-145.

[16] PauL J. BEsL aAND NEIL D. McKay, A Method for Registration of 3-D Shapes,
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
14 (1992), pp. 239-256.

[17] ToLGA BIRDAL AND SLOBODAN ILIC, Point Pair Features Based Object Detection
and Pose Estimation Revisited, in 2015 International Conference on 3D Vision,
3DV 2015, Lyon, France, October 19-22, 2015, Michael S. Brown, Jana
Koseckd, and Christian Theobalt, eds., IEEE, 2015, pp. 527-535.

174



BIBLIOGRAPHY

[18] MARCEL BIRN, MANUEL HOLTGREWE, PETER SANDERS, AND JOHANNES SIN-
GLER, Simple and Fast Nearest Neighbor Search, in Proceedings of the Twelfth
Workshop on Algorithm Engineering and Experiments, ALENEX 2010,
Austin, Texas, USA, January 16, 2010, Guy E. Blelloch and Dan Halperin,
eds., SIAM, 2010, pp. 43-54.

[19] ImMma Boapa, Narcis CoLr, NARCIS MADERN, AND JOAN ANTONI SELLARES,
Approximations of 3D generalized Voronoi diagrams, in (Informal) Proceedings
of the 21st European Workshop on Computational Geometry, Eindhoven,
The Netherlands, March 9-11, 2005, Technische Universiteit Eindhoven,
2005, pp. 163-166.

[20] ImMmA Boapa, Narcis CoLrL, NARCIS MADERN, AND JOAN ANTONI SELLARES,
Approximations of 2D and 3D generalized Voronoi diagrams, International
Journal of Computer Mathematics, 85 (2008), pp. 1003-1022.

[21] DoriT BORRMANN, JAN ELSEBERG, KAl LINGEMANN, AND ANDREAS
NUcHTER, The 3D Hough Transform for plane detection in point clouds: A
review and a new accumulator design, 3D Research, 2 (2011), pp. 1-13.

[22] RicHARD J. CAMPBELL AND PATRICK ]. FLYNN, A Survey Of Free-Form Ob-
ject Representation and Recognition Techniques, Computer Vision and Image
Understanding, 81 (2001), pp. 166-210.

[23] Joun CaNNY, A Computational Approach to Edge Detection, IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 8 (1986), pp. 679-
698.

[24] Hur CHEN AND Bir BHANU, 3D free-form object recognition in range images
using local surface patches, Pattern Recognition Letters, 28 (2007), pp. 1252-
1262.

[25] MicHAEL CHERTOK AND YOsI KeLLER, Efficient High Order Matching, IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 32
(2010), pp. 2205-2215.

[26] GEORGIOSs CHLIVEROS, RUl PIMENTEL DE FIGUEIREDO, PLINIO MORENO,
MARIA PATERAKI, ALEXANDRE BERNARDINO, JOost SANTOS-VICTOR, AND
Panos E. TRaBANIAS, A Framework for 3D Object Identification and Tracking,
in VISAPP 2014 - Proceedings of the 9th International Conference on
Computer Vision Theory and Applications, Volume 3, Lisbon, Portugal,
5-8 January, 2014, Sebastiano Battiato and José Braz, eds., SciTePress, 2014,
pp- 672-677.

[27] CHANGHYUN CHOI AND HENRIK I. CHRISTENSEN, 3D pose estimation of daily
objects using an RGB-D camera, in 2012 IEEE /RS] International Conference on

175



BIBLIOGRAPHY

Intelligent Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal,
October 7-12, 2012, IEEE, 2012, pp. 3342-3349.

[28] CHANGHYUN CHOI AND HENRIK I. CHRISTENSEN, RGB-D object pose estimation
in unstructured environments, Robotics and Autonomous Systems, 75 (2016),
pp- 595-613.

[29] CrANGHYUN CHOoI, YuicHI TacucHi, ONCEL TuzeL, MING-YU LIiu, AND
SRIKUMAR RAMALINGAM, Voting-based pose estimation for robotic assembly
using a 3D sensor, in IEEE International Conference on Robotics and Au-
tomation, ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota, USA, IEEE,
2012, pp. 1724-1731.

[30] WoN-Seok CHOI1 AND SE-YOUNG OB, Fast Nearest Neighbor Search using
Approximate Cached k-d tree, in 2012 IEEE /RS] International Conference on
Intelligent Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal,
October 7-12, 2012, IEEE, 2012, pp. 4524-4529.

[31] CHIN-SENG CHUA AND RAY JARvIs, Point Signatures: A New Representation
for 3D Object Recognition, International Journal of Computer Vision (IJCV),
25 (1997), pp. 63-85.

[32] HaiLi CHUI AND ANAND RANGARAJAN, A new point matching algorithm for
non-rigid registration, Computer Vision and Image Understanding, 89 (2003),
pp- 114-141.

[33] ANNA CLARK, The struggle for the breeches gender and the making of the British
working class, University of California Press, Berkeley, 1995.

[34] JouN G. CLEARY AND GEOFF WYVILL, Analysis of an algorithm for fast ray
tracing using uniform space subdivision, The Visual Computer, 4 (1988), pp. 65—
83.

[35] FERNAND S. COHEN AND JIN-YINN WANG, Part II: 3-D Object Recognition
and Shape Estimation from Image Contours Using B-splines, Shape Invariant
Matching, and Neural Network, IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 16 (1994), pp. 13-23.

[36] DoNATELLO CONTE, PASQUALE FoGGia, CARLO SANSONE, AND MARIO VENTO,
Thirty Years Of Graph Matching In Pattern Recognition, International Journal of
Pattern Recognition and Artificial Intelligence (IJPRAI), 18 (2004), pp. 265-
298.

[37] Rur PiMENTEL DE FIGUEIREDO, PLINIO MORENO, AND ALEXANDRE
BERNARDINO, Fast 3D Object Recognition of Rotationally Symmetric Objects, in
Pattern Recognition and Image Analysis - 6th Iberian Conference, IbPRIA

176



BIBLIOGRAPHY

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

2013, Funchal, Madeira, Portugal, June 5-7, 2013. Proceedings, Jodo M.
Sanches, Luisa Mic6, and Jaime S. Cardoso, eds., vol. 7887 of Lecture Notes
in Computer Science, Springer, 2013, pp. 125-132.

Rur PiMENTEL DE FIGUEIREDO, PLINIO MORENO, AND ALEXANDRE
BERNARDINO, Efficient pose estimation of rotationally symmetric objects, Neuro-
computing, 150 (2015), pp. 126-135.

B DELAUNAY, Sur la sphere vide. A la memoire de George Voronoi, Bulletin de
I’Académie des Sciences de 'URSS. Classe des sciences mathématiques et
na, (1934), pp. 793-800.

CHITRA DORAI AND ANIL K. JAIN, COSMOS - A Representation Scheme for
3D Free-Form Objects, IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 19 (1997), pp. 1115-1130.

BERTRAM DROST AND SLOBODAN ILIC, 3D Object Detection and Localization
Using Multimodal Point Pair Features, in 2012 Second International Confer-
ence on 3D Imaging, Modeling, Processing, Visualization & Transmission,
Zurich, Switzerland, October 13-15, 2012, IEEE Computer Society, 2012,
pp. 9-16.

BErRTRAM DROST AND SLOBODAN Ir1C, A Hierarchical Voxel Hash for Fast 3D
Nearest Neighbor Lookup, in Pattern Recognition - 35th German Conference,
GCPR 2013, Saarbriicken, Germany, September 3-6, 2013. Proceedings,
Joachim Weickert, Matthias Hein, and Bernt Schiele, eds., vol. 8142 of
Lecture Notes in Computer Science, Springer, 2013, pp. 302-312.

BERTRAM DRrROST AND SLOBODAN IrIC, Graph-Based Deformable 3D Object
Matching, in Pattern Recognition - 37th German Conference, GCPR 2015,
Aachen, Germany, October 7-10, 2015, Proceedings, Juergen Gall, Peter V.
Gehler, and Bastian Leibe, eds., vol. 9358 of Lecture Notes in Computer
Science, Springer, 2015, pp. 222-233.

BERTRAM DROST AND SLOBODAN ILIC, Local Hough Transform for 3D Primitive
Detection, in 2015 International Conference on 3D Vision, 3DV 2015, Lyon,
France, October 19-22, 2015, Michael S. Brown, Jana Koseckd, and Christian
Theobalt, eds., IEEE, 2015, pp. 398-406.

BeErRTRAM DROST AND MARKUS ULRICH, Recognition and pose determination of
3D objects in multimodal scenes, 2012. EP 2720171.

BERTRAM DRrROsT, MARKUS ULRICH, NASSIR NAVAB, AND SLOBODAN ILIC,
Model globally, match locally: Efficient and robust 3D object recognition, in The
Twenty-Third IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, IEEE Computer
Society, 2010, pp. 998-1005.

177



BIBLIOGRAPHY

[47] BERTRAM HEINRICH DROST AND MARKUS ULRICH, Recognition And Pose
Determination Of 3d Objects In 3d Scenes Using Geometric Point Pair Descriptors
And The Generalized Hough Transform, 2010. EP 2385483.

[48] OriviEr DUCHENNE, FRANCIS R. BAcH, IN-So KwEON, AND JEAN PoNCE, A
Tensor-Based Algorithm for High-Order Graph Matching, IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 33 (2011), pp. 2383-
2395.

[49] Rex A. DwYER, Higher-Dimensional Voronoi Diagrams in Linear Expected Time,
Discrete & Computational Geometry, 6 (1991), pp. 343-367.

[50] JAN ELSEBERG, STEPHANE MAGNENAT, ROLAND SIEGWART, AND ANDREAS
NuEecHTER, Comparison of nearest-neighbor-search strategies and implementations
for efficient shape registration, Journal of Software Engineering for Robotics, 3
(2012), pp. 2-12.

[61] LEoNHARD EurLer, FORMVLAE GENERALES PRO TRANSLATIONE
QVACVNQVE CORPORVM RIGIDORVM, Novi Commentarii Academiae
Scientiarum Imperialis Petropolitanae, (1776), pp. 189-207.

[52] MARTIN A. FIsSCHLER AND ROBERT C. BOLLES, Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Automated
Cartography, Communications of the ACM, 24 (1981), pp. 381-395.

[53] ANDREW W. F1TZGIBBON, Robust registration of 2D and 3D point sets, Image
and Vision Computing, 21 (2003), pp. 1145-1153.

[54] DARIU GAVRILA AND VASANTH PHILOMIN, Real-Time Object Detection for
"Smart” Vehicles, in ICCV, 1999, pp. 87-93.

[55] NaTtasHA GELFAND, NILOY J. MITRA, LEONIDAS J. GUIBAS, AND HELMUT
PoTTMANN, Robust Global Registration, in Third Eurographics Symposium
on Geometry Processing, Vienna, Austria, July 4-6, 2005, Mathieu Desbrun
and Helmut Pottmann, eds., vol. 255 of ACM International Conference
Proceeding Series, Eurographics Association, 2005, pp. 197-206.

[56] JostaH WiLLARD GiBBs, Elements of Vector Analysis, Tuttle, Morehouse &
Taylor, New Haven, 1884.

[57] ANDREW S. GLASSNER, Space subdivision for fast ray tracing, Computer Graph-
ics and Applications, IEEE, 4 (1984), pp. 15-24.

[58] PauLro F. U. GoTARDO, OLGA REGINA PEREIRA BELLON, AND LUCIANO SILVA,
Range Image Segmentation by Surface Extraction Using an Improved Robust
Estimator, in 2003 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2003), 16-22 June 2003, Madison, WI, USA,
IEEE Computer Society, 2003, pp. 33-38.

178



BIBLIOGRAPHY

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Craus GRaMkow, On Averaging Rotations, Journal of Mathematical Imaging
and Vision, 15 (2001), pp. 7-16.

MicHAEL A. GREENSPAN AND Guy GoODIN, A Nearest Neighbor Method for
Efficient ICP, in 3rd International Conference on 3D Digital Imaging and
Modeling (3DIM 2001), 28 May - 1 June 2001, Quebec City, Canada, IEEE
Computer Society, 2001, pp. 161-170.

MIcHAEL A. GREENSPAN AND MIKE YURICK, Approximate K-D Tree Search for
Efficient ICP, in 4th International Conference on 3D Digital Imaging and
Modeling (3DIM 2003), 6-10 October 2003, Banff, Canada, IEEE Computer
Society, 2003, pp. 442-448.

YurLAaN Guo, MoHAMMED BENNAMOUN, FERDOUS AHMED SOHEL, MIN LU,
AND JIANWEI WAN, 3D Object Recognition in Cluttered Scenes with Local Surface
Features: A Survey, IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 36 (2014), pp. 2270-2287.

SARIEL HAR-PELED, A Replacement for Voronoi Diagrams of Near Linear Size,
in 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, IEEE Computer Society,
2001, pp. 94-103.

GUNTER HETZEL, BASTIAN LEIBE, PAUL LEVI, AND BERNT SCHIELE, 3D Object
Recognition from Range Images using Local Feature Histograms, in 2001 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2001), with CD-ROM, 8-14 December 2001, Kauai, HI, USA, IEEE
Computer Society, 2001, pp. 394-399.

STEFAN HINTERSTOISSER, STEFAN HOLZER, CEDRIC CAGNIART, SLOBODAN
ILic, KurT KONOLIGE, NASSIR NAVAB, AND VINCENT LEPETIT, Multimodal
templates for real-time detection of texture-less objects in heavily cluttered scenes, in
IEEE International Conference on Computer Vision, ICCV 2011, Barcelona,
Spain, November 6-13, 2011, Dimitris N. Metaxas, Long Quan, Alberto
Sanfeliu, and Luc J. Van Gool, eds., IEEE, 2011, pp. 858-865.

Paur W HorLanDp AND Roy E WELscH, Robust regression using iteratively
reweighted least-squares, Communications in Statistics-Theory and Methods,
6 (1977), pp- 813-827.

STEFAN HOLZER, STEFAN HINTERSTOISSER, SLOBODAN ILIC, AND NASSIR
Navas, Distance transform templates for object detection and pose estimation, in
2009 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, IEEE
Computer Society, 2009, pp. 1177-1184.

179



BIBLIOGRAPHY

[68] AbaAM HOOVER, GILLIAN JEAN-BAPTISTE, XIAOYI JTIANG, PATRICK J. FLYNN,
Horst Bunkg, DMITRY B. GoLDGOF, KEVIN W. BOWYER, DAvID W. EGGERT,
ANDREW W. F11ZG1BBON, AND ROBERT B. FISHER, An Experimental Compari-
son of Range Image Segmentation Algorithms, IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 18 (1996), pp. 673-689.

[69] HEenz Hor¥, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Mathematis-
che Annalen, 96 (1927), pp. 225-249.

[70] Heinz Hor¥, Systeme symmetrischer Bilinearformen und euklidische Modelle der
projektiven Riume, in Selecta Heinz Hopf, Springer, 1964, pp. 107-118.

[71] Du Q. HuyNH, Metrics for 3D Rotations: Comparison and Analysis, Journal of
Mathematical Imaging and Vision, 35 (2009), pp. 155-164.

[72] Yoonno HwaNG, BonYUNG HAN, AND HEE-KAP AHN, A fast nearest neighbor
search algorithm by nonlinear embedding, in 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, Providence, RI, USA, June 16-21,
2012, IEEE Computer Society, 2012, pp. 3053-3060.

[73] YanI IoanNoOuU, BABAK TAATI, ROBIN HARRAP, AND MICHAEL A. GREENSPAN,
Difference of Normals as a Multi-scale Operator in Unorganized Point Clouds, in
2012 Second International Conference on 3D Imaging, Modeling, Processing,
Visualization & Transmission, Zurich, Switzerland, October 13-15, 2012,
IEEE Computer Society, 2012, pp. 501-508.

[74] X1a0YI JIANG AND HORsT BUNKE, Edge Detection in Range Images Based on
Scan Line Approximation, Computer Vision and Image Understanding, 73
(1999), pp. 183-199.

[75] ANDREW EDIE JOHNSON AND MARTIAL HEBERT, Using Spin Images for Efficient
Object Recognition in Cluttered 3D Scenes, IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 21 (1999), pp. 433-449.

[76] DimritriOos KaTtsouras, Robust Extraction of Vertices in Range Images by Con-
straining the Hough Transform, in Pattern Recognition and Image Analysis,
First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain,
June 4-6, 2003, Proceedings, Francisco J. Perales Lépez, Aurélio C. Campilho,
Nicolas Pérez de la Blanca, and Alberto Sanfeliu, eds., vol. 2652 of Lecture
Notes in Computer Science, Springer, 2003, pp. 360-369.

[77] EunyounG KiMm AND GERARD G. MEDIONI, 3D object recognition in range
images using visibility context, in 2011 IEEE/RS] International Conference
on Intelligent Robots and Systems, IROS 2011, San Francisco, CA, USA,
September 25-30, 2011, IEEE, 2011, pp. 3800-3807.

180



BIBLIOGRAPHY

[78] Sunc IL KiM AND SUNG JoOoN AHN, Extraction of Geometric Primitives from
Point Cloud Data, Proceedings of the International Conference on Control,
Automation and Systems (ICCAS), 2005, 2 (2005), pp. 2010-2014.

[79] ULricH KrLANK, LORENZ MOSENLECHNER, ALEXIS MALDONADO, AND
MicHAEL BEeTz, Robots that validate learned perceptual models, in IEEE Inter-
national Conference on Robotics and Automation, ICRA 2012, 14-18 May,
2012, St. Paul, Minnesota, USA, IEEE, 2012, pp. 4456—4462.

[80] Kevin Lar, LiereNG Bo, X1AOFENG REN, AND DIETER FOx, Sparse distance
learning for object recognition combining RGB and depth information, in IEEE In-
ternational Conference on Robotics and Automation, ICRA 2011, Shanghai,
China, 9-13 May 2011, IEEE, 2011, pp. 4007-4013.

[81] JuneMiIN LEg, Minsu CHO, AND KyouNG Mu LeE, Hyper-graph matching via
reweighted random walks, in The 24th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25
June 2011, IEEE Computer Society, 2011, pp. 1633-1640.

[82] MARIUS LEORDEANU AND MARTIAL HEBERT, A Spectral Technique for Corre-
spondence Problems Using Pairwise Constraints, in 10th IEEE International
Conference on Computer Vision (ICCV 2005), 17-20 October 2005, Beijing,
China, IEEE Computer Society, 2005, pp. 1482-1489.

[83] MARIUS LEORDEANU, ANDREI ZANFIR, AND CRISTIAN SMINCHISESCU, Semi-
supervised learning and optimization for hypergraph matching, in IEEE Inter-
national Conference on Computer Vision, ICCV 2011, Barcelona, Spain,
November 6-13, 2011, Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu,
and Luc J. Van Gool, eds., IEEE, 2011, pp. 2274-2281.

[84] YANGYAN L1, X1A0KUN WU, YIORGOS CHRYSANTHOU, ANDREI SHARF, DANIEL
CoHEN-OR, AND NILOY J. MITRA, GlobFit: consistently fitting primitives by
discovering global relations, ACM Transactions on Graphics (TOG), 30 (2011),
p. 52.

[85] Davip G. Lowg, Distinctive Image Features from Scale-Invariant Keypoints,
International Journal of Computer Vision (IJCV), 60 (2004), pp. 91-110.

[86] MoNA MAHMOUDI AND GUILLERMO SAPIRO, Three-dimensional point cloud
recognition via distributions of geometric distances, Graphical Models, 71 (2009),
pp- 22-31.

[87] GEORGE J. MamMIC AND MOHAMMED BENNAMOUN, Representation and Recogni-
tion of 3D Free-Form Objects, Digital Signal Processing, 12 (2002), pp. 47-76.

[88] BoGDAN MATEI, YING SHAN, HARPREET S. SAWHNEY, Y1 TAN, RAKESH KUMAR,
DaNteL FE. HUBER, AND MARTIAL HEBERT, Rapid Object Indexing Using Locality

181



BIBLIOGRAPHY

Sensitive Hashing and Joint 3D-Signature Space Estimation, IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 28 (2006), pp. 1111-
1126.

[89] MaNUs MCELHONE, JORG STUCKLER, AND SVEN BEHNKE, Joint detection and
pose tracking of multi-resolution surfel models in RGB-D, in 2013 European
Conference on Mobile Robots, Barcelona, Catalonia, Spain, September 25-27,
2013, IEEE, 2013, pp. 131-137.

[90] DoNALD MEAGHER, Geometric modeling using octree encoding, Computer
Graphics and Image Processing, 19 (1982), pp. 129-147.

[91] AjmAL S. MIAN, MOHAMMED BENNAMOUN, AND RoBYN A. OWENS, Au-
tomatic Correspondence for 3d Modeling: an Extensive Review, International
Journal of Shape Modeling, 11 (2005), pp. 253-291.

[92] AjMmAL S. M1AN, MOHAMMED BENNAMOUN, AND ROBYN A. OWENS, Three-
Dimensional Model-Based Object Recognition and Segmentation in Cluttered
Scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 28 (2006), pp. 1584-1601.

[93] AjMAL S. MIAN, MOHAMMED BENNAMOUN, AND ROBYN A. OWENS, On the
Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval
from Cluttered Scenes, International Journal of Computer Vision (IJCV), 89
(2010), pp. 348-361.

[94] LyneTTE I. MILLETT AND SAMUEL H. FULLER, The Future of Computing Perfor-
mance: Game Over or Next Level?, National Academies Press, Washington,
DC, 2011.

[95] MAHER MOAKHER, Means and Averaging in the Group of Rotations, SIAM
Journal on Matrix Analysis and Applications, 24 (2002), pp. 1-16.

[96] THOMAS MORWALD, ANDREAS RICHTSFELD, JOHANN PRANKL, MICHAEL ZIL-
LICH, AND MARKUS VINCZE, Geometric data abstraction using B-splines for range
image segmentation, in 2013 IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany, May 6-10, 2013, IEEE, 2013, pp. 148-153.

[97] FREDERICK MOSTELLER AND JOHN WILDER TUKEY, Data analysis and regression:
a second course in statistics., Addison-Wesley Series in Behavioral Science:
Quantitative Methods, (1977).

[98] Davip M. MouNT AND SUNIL ARYA, ANN: A Library for Approximate Nearest
Neighbor Searching. https://www.cs.umd.edu/~mount /ANN/.

[99] Mar1us Muja aND Davip G. Lowg, Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration, in VISAPP 2009 - Proceedings of the

182



BIBLIOGRAPHY

Fourth International Conference on Computer Vision Theory and Applica-
tions, Lisboa, Portugal, February 5-8, 2009 - Volume 1, Alpesh Ranchordas
and Helder Aratjo, eds., INSTICC Press, 2009, pp. 331-340.

[100] MVTEc SortwArRe GMBH, HALCON - the power of machine vision. http:
//halcon.com.

[101] ANDRIY MYRONENKO AND XUBO B. SONG, Point Set Registration: Coherent
Point Drift, IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 32 (2010), pp. 2262-2275.

[102] Duc DunG NGuUYEN, JAE PiL Ko, AND JAE WooOK JEON, Determination of 3D
object pose in point cloud with CAD model, in 21st Korea-Japan Joint Workshop
on Frontiers of Computer Vision, FCV 2015, Mokpo, South Korea, January
28-30, 2015, Soon-Young Park, Hironobu Fujiyoshi, Kunihito Kato, Hongbin
Zha, Chil-Woo Lee, and Kang-Hyun Jo, eds., IEEE, 2015, pp. 1-6.

[103] ANDREAS NUCHTER, KA1 LINGEMANN, AND JoACHIM HERTZBERG, Cached
k-d tree search for ICP algorithms, in Sixth International Conference on 3-D
Digital Imaging and Modeling, 3DIM 2007, 21-23 August 2007, Montreal,
Quebec, Canada, IEEE Computer Society, 2007, pp. 419-426.

[104] ABpUL NURUNNABI, DAvID BELTON, AND GEOFF A. W. WEST, Robust Segmen-
tation in Laser Scanning 3D Point Cloud Data, in 2012 International Conference
on Digital Image Computing Techniques and Applications, DICTA 2012,
Fremantle, Australia, December 3-5, 2012, IEEE, 2012, pp. 1-8.

[105] BAsTtiAN OEHLER, JORG STUCKLER, JOCHEN WELLE, DIRK SCHULZ, AND SVEN
BEHNKE, Efficient Multi-resolution Plane Segmentation of 3D Point Clouds, in
Intelligent Robotics and Applications - 4th International Conference, ICIRA
2011, Aachen, Germany, December 6-8, 2011, Proceedings, Part II, Sabina
Jeschke, Honghai Liu, and Daniel Schilberg, eds., vol. 7102 of Lecture Notes
in Computer Science, Springer, 2011, pp. 145-156.

[106] CLARK F. OLsoN AND DANIEL P. HUTTENLOCHER, Automatic target recognition
by matching oriented edge pixels, IEEE Transactions on Image Processing, 6
(1997), pp. 103-113.

[107] Jens OverBY, LARs BobpumMm, Erik Kjems, AND PM I1sog, Automatic 3D
building reconstruction from airborne laser scanning and cadastral data using
Hough transform, The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences (IAPRS), 35 (2004), pp. 296-301.

[108] IN Kyu PARK, MARCEL GERMANN, MICHAEL D. BREITENSTEIN, AND
HANSPETER PFISTER, Fast and automatic object pose estimation for range images
on the GPU, Machine Vision and Applications (MVA), 21 (2010), pp. 749-766.

183



BIBLIOGRAPHY

[109] GEORGIOS PAssaLls, [oANNIS A. KAKADIARIS, AND THEOHARIS THEOHARIS,
Intraclass Retrieval of Nonrigid 3D Objects: Application to Face Recognition,
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
29 (2007), pp. 218-229.

[110] T. RaBBaNI AND F. VAN DEN HEUVEL, Efficient hough transform for automatic
detection of cylinders in point clouds, in Proceedings of the 11th Annual
Conference of the Advanced School for Computing and Imaging (ASCI05),
vol. 3, 2005, pp. 60-65.

[111] NARAYAN S. Raja AND ANIL K. JAIN, Recognizing geons from superquadrics
fitted to range data, Image and Vision Computing, 10 (1992), pp. 179-190.

[112] OrLINDE RODRIGUES, Des lois géométriques qui régissent les déplacements d'un
systéme solide dans Iéspace, et de la variation des coordonnées provenant de ces
déplacements considérés indépendamment des causes qui peuvent les produire,
Journal de Mathématiques Pures et Appliquées, 5 (1840), pp. 380—440.

[113] SALvADOR Ru1z-CoRREA, LINDA G. SHAPIRO, AND MARINA MEILA, A New
Paradigm for Recognizing 3-D Object Shapes from Range Data, in 9th IEEE
International Conference on Computer Vision (ICCV 2003), 14-17 October
2003, Nice, France, IEEE Computer Society, 2003, pp. 1126-1133.

[114] SzymoN RusiNkiEwIcz AND MARC LEvoy, Efficient Variants of the ICP Algo-
rithm, in 3rd International Conference on 3D Digital Imaging and Modeling
(3DIM 2001), 28 May - 1 June 2001, Quebec City, Canada, IEEE Computer
Society, 2001, pp. 145-152.

[115] Rapu BoGpaN Rusu, Nico BLopow, AND MiICHAEL BEETZ, Fast Point Feature
Histograms (FPFH) for 3D registration, in 2009 IEEE International Conference
on Robotics and Automation, ICRA 2009, Kobe, Japan, May 12-17, 2009,
IEEE, 2009, pp. 3212-3217.

[116] Rapu BoGpaN Rusu, Nico BLopow, ZOLTAN CSABA MARTON, AND MICHAEL
BeEtrz, Aligning point cloud views using persistent feature histograms, in 2008
IEEE/RS] International Conference on Intelligent Robots and Systems,
September 22-26, 2008, Acropolis Convention Center, Nice, France, IEEE,
2008, pp. 3384-3391.

[117] Rapu BoGpaN Rusu, GARY R. BRADSKI, ROMAIN THIBAUX, AND JOHN M.
Hsu, Fast 3D recognition and pose using the Viewpoint Feature Histogram, in
2010 IEEE/RS]J International Conference on Intelligent Robots and Systems,
October 18-22, 2010, Taipei, Taiwan, IEEE, 2010, pp. 2155-2162.

[118] RENATO F. SALAS-MORENO, RICHARD A. NEWCOMBE, HAUKE STRASDAT, PAUL
H. J. KELLY, AND ANDREW J. DAvVIsSON, SLAM++: Simultaneous Localisation

184



BIBLIOGRAPHY

and Mapping at the Level of Objects, in 2013 IEEE Conference on Computer
Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013, IEEE,
2013, pp. 1352-1359.

[119] SamuELE SALti, FEDERICO TOMBARI, AND Lulct b1 Sterano, SHOT: Unique
signatures of histograms for surface and texture description, Computer Vision
and Image Understanding, 125 (2014), pp. 251-264.

[120] HANAN SaMET, Foundations of Multidimensional And Metric Data Structures,
Morgan Kaufmann, 2006.

[121] PETER ScHATTE, Computing the Angle between Vectors, Computing, 63 (1999),
pp- 93-96.

[122] E]J SCHLOSSMACHER, An iterative technique for absolute deviations curve fitting,
Journal of the American Statistical Association, 68 (1973), pp. 857-859.

[123] RUWEN SCHNABEL, ROLAND WAHL, AND REINHARD KLEIN, Efficient RANSAC
for Point-Cloud Shape Detection, Computer Graphics Forum, 26 (2007),
pp- 214-226.

[124] DINO SCHWEITZER, ANDREW GLASSNER, AND MIKE KEELER, eds., Proceedings
of the 21th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1994, Orlando, FL, USA, July 24-29, 1994, ACM, 1994.

[125] THOMAS W. SEDERBERG AND SCOTT R. PARRY, Free-form deformation of solid
geometric models, in Proceedings of the 13th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH 1986, Dallas, Texas,
USA, August 18-22, 1986, David C. Evans and Russell J. Athay, eds., ACM,
1986, pp. 151-160.

[126] YING SHAN, BoGpDAN MATEI, HARPREET S. SAWHNEY, RAKESH KUMAR,
DanteL F. HUBER, AND MARTIAL HEBERT, Linear Model Hashing and Batch
RANSAC for Rapid and Accurate Object Recognition, in IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, vol. 2, 2004,
pp- 121-128.

[127] O YSTEIN SKOTHEIM, MORTEN LIND, PAL YSTGAARD, AND SIGURD AKSNES
FJERDINGEN, A flexible 3D object localization system for industrial part handling,
in 2012 IEEE/RS] International Conference on Intelligent Robots and Sys-
tems, IROS 2012, Vilamoura, Algarve, Portugal, October 7-12, 2012, IEEE,
2012, pp. 3326-3333.

[128] DYSTEIN SKOTHEIM, JENS T THIELEMANN, ASBJORN BERGE, AND ARNE SOM-
MERFELT, Robust 3D object localization and pose estimation for random bin picking
with the 3DMaMa algorithm, in IS&T /SPIE Electronic Imaging, International
Society for Optics and Photonics, 2010, pp. 75260E-75260E.

185



BIBLIOGRAPHY

[129] NikaiL SomANI, CAaixiA Ca1l, ALEXANDER CLIFFORD PERZYLO, MARKUS
RickerT, AND ALo1s KNOLL, Object Recognition Using Constraints from Primi-
tive Shape Matching, in Advances in Visual Computing - 10th International
Symposium, ISVC 2014, Las Vegas, NV, USA, December 8-10, 2014, Proceed-
ings, Part I, George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin,
Ryan McMahan, Jason Jerald, Hui Zhang, Steven M. Drucker, Chandra
Kambhamettu, Maha El Choubassi, Zhigang Deng, and Mark Carlson, eds.,
vol. 8887 of Lecture Notes in Computer Science, Springer, 2014, pp. 783-792.

[130] BAsTiAN STEDER, RADU BoGpAN Rusu, KurT KONOLIGE, AND WOLFRAM
BURGARD, Point feature extraction on 3D range scans taking into account object
boundaries, in IEEE International Conference on Robotics and Automation,
ICRA 2011, Shanghai, China, 9-13 May 2011, IEEE, 2011, pp. 2601-2608.

[131] CARSTEN STEGER, Occlusion, Clutter, and Illumination Invariant Object Recogni-
tion, in The International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences (IAPRS), 2002, pp. 345-350.

[132] CARSTEN STEGER, MARKUS ULRICH, AND CHRISTIAN WIEDEMANN, Machine
Vision Algorithms and Applications, Wiley-VCH Verlag GmbH & Co. KGaA,
1. auflage ed., Nov. 2007.

[133] FriDTJOF STEIN AND GERARD G. MEDIONI, Structural Indexing: Efficient 3-D
Object Recognition, IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 14 (1992), pp. 125-145.

[134] CHARLES V. STEWART, Robust Parameter Estimation in Computer Vision, SIAM
Review, 41 (1999), pp. 513-537.

[135] STEFAN STIENE, KAl LINGEMANN, ANDREAS NUCHTER, AND JOACHIM
HerTZBERG, Contour-Based Object Detection in Range Images, in 3rd Interna-
tional Symposium on 3D Data Processing, Visualization and Transmission
(3DPVT 2006), 14-16 June 2006, Chapel Hill, North Carolina, USA, IEEE
Computer Society, 2006, pp. 168-175.

[136] GEORGE C. STOCKMAN, Object recognition and localization via pose clustering,
Computer Vision, Graphics, and Image Processing, 40 (1987), pp. 361-387.

[137] JoHN STUELPNAGEL, On the parametrization of the three-dimensional rotation
group, SIAM review, 6 (1964), pp. 422-430.

[138] MiNn SuN, GARY R. BRADSKI, BING-XIN XU, AND SILVIO SAVARESE, Depth-
Encoded Hough Voting for Joint Object Detection and Shape Recovery, in Com-
puter Vision - ECCV 2010 - 11th European Conference on Computer Vision,
Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part V, Kostas
Daniilidis, Petros Maragos, and Nikos Paragios, eds., vol. 6315 of Lecture
Notes in Computer Science, Springer, 2010, pp. 658-671.

186



BIBLIOGRAPHY

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

Y1YONG SUN, JooN K1 Paik, ANDREAS F. KoscHAN, Davip L. PAGE, AND
Monar A. ABipi, Point fingerprint: A new 3-D object representation scheme,
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 33 (2003),
pp- 712-717.

BaBAK TAATI AND MICHAEL A. GREENSPAN, Local shape descriptor selection for
object recognition in range data, Computer Vision and Image Understanding,
115 (2011), pp. 681-694.

Fayez TARsHA-KURDI, TANIA LANDES, AND PIERRE GRUSSENMEYER, Hough-
transform and extended ransac algorithms for automatic detection of 3d building
roof planes from lidar data, in ISPRS Workshop on Laser Scanning 2007 and
SilviLaser 2007, vol. 36, 2007, pp. 407-412.

JEANETTE A. THOMAS, Echolocation in Bats and Dolphins, University of
Chicago Press, 2004.

GEeOFFREY TIMMINS, The last shift: the decline of handloom weaving in nineteenth-
century Lancashire, Manchester University Press ; Distributed exclusively in
the USA and Canada by St. Martin’s Press, Manchester; New York, 1993.

FEDERICO TOMBARI, SAMUELE SALTI, AND LUIGI DI STEFANO, Unique Signa-
tures of Histograms for Local Surface Description, in Computer Vision - ECCV
2010, 11th European Conference on Computer Vision, Heraklion, Crete,
Greece, September 5-11, 2010, Proceedings, Part III, Kostas Daniilidis, Petros
Maragos, and Nikos Paragios, eds., vol. 6313 of Lecture Notes in Computer
Science, Springer, 2010, pp. 356-369.

FEDERICO TOMBARI, SAMUELE SALTI, AND LUIGI DI STEFANO, A combined
texture-shape descriptor for enhanced 3D feature matching, in 18th IEEE Inter-
national Conference on Image Processing, ICIP 2011, Brussels, Belgium,
September 11-14, 2011, Benoit Macq and Peter Schelkens, eds., IEEE, 2011,
pp- 809-812.

AKSEL ANDREAS TRANSETH, JYSTEIN SKOTHEIM, HENRIK SCHUMANN-OLSEN,
GORM JOoHANSEN, JENs T THIELEMANN, AND ErRIK KYRKJEB@, A robotic con-
cept for remote maintenance operations: A robust 3D object detection and pose
estimation method and a novel robot tool., in IROS, 2010, pp. 5099-5106.

ONcEL TuzeL, MING-YU Liu, YuicHI TAGUCHI, AND ARVIND RAGHUNATHAN,
Learning to Rank 3D Features, in Computer Vision - ECCV 2014 - 13th Euro-
pean Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part I, David J. Fleet, Tomds Pajdla, Bernt Schiele, and Tinne Tuytelaars, eds.,
vol. 8689 of Lecture Notes in Computer Science, Springer, 2014, pp. 520-535.

187



BIBLIOGRAPHY

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

MARKUS ULRICH, CARSTEN STEGER, AND ALBERT BAUMGARTNER, Real-time
object recognition using a modified generalized Hough transform, Pattern Recog-
nition, 36 (2003), pp. 2557-2570.

GEORGE VOSSELMAN AND SANDER D1JKMAN, 3D building model reconstruction
from point clouds and ground plans, The International Archives of the Pho-

togrammetry, Remote Sensing and Spatial Information Sciences (IAPRS),
34 (2001), pp. 37-44.

Eric WaHL, UrLricH HILLENBRAND, AND GERD HIRZINGER, Surflet-Pair-
Relation Histograms: A Statistical 3D-Shape Representation for Rapid Classifica-
tion, in 4th International Conference on 3D Digital Imaging and Modeling
(3DIM 2003), 6-10 October 2003, Bantf, Canada, IEEE Computer Society,
2003, pp. 474-482.

ANDREW WILLIS AND BEIBEI ZHOU, Ridge Walking for 3D Surface Segmentation,
in Proceedings of Fifth Asian Conference on Computer Vision, Paris, France,
2010.

SiMON WINKELBACH, SVEN MOLKENSTRUCK, AND FRIEDRICH M. WAHL, Low-
Cost Laser Range Scanner and Fast Surface Registration Approach, in Pattern
Recognition, 28th DAGM Symposium, Berlin, Germany, September 12-14,
2006, Proceedings, Katrin Franke, Klaus-Robert Miiller, Bertram Nickolay,
and Ralf Schifer, eds., vol. 4174 of Lecture Notes in Computer Science,
Springer, 2006, pp. 718-728.

CHANGCHANG Wu, BriaN CLirp, XIAOWEI LI, JAN-MICHAEL FRAHM, AND
MaARc PorrErEYS, 3D model matching with Viewpoint-Invariant Patches (VIP),
in 2008 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2008), 24-26 June 2008, Anchorage, Alaska, USA, IEEE
Computer Society, 2008.

SAMEH M. YAMANY AND ALY A. FARAG, Surfacing Signatures: An Orienta-
tion Independent Free-Form Surface Representation Scheme for the Purpose of
Objects Registration and Matching, IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 24 (2002), pp. 1105-1120.

PING YAN AND KEvIN W. BOWYER, A fast algorithm for ICP-based 3D shape
biometrics, Computer Vision and Image Understanding, 107 (2007), pp. 195-
202.

T. Zanaria AND F. PrETEUX, Hough transform-based 3D mesh retrieval, in
Proceedings of the SPIE Conf. 4476 on Vision Geometry X, 2001, pp. 175-
185.

188



BIBLIOGRAPHY

[157] RON ZAss AND AMNON SHASHUA, Probabilistic graph and hypergraph matching,
in 2008 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2008), 24-26 June 2008, Anchorage, Alaska, USA, IEEE
Computer Society, 2008.

[158] ZHENGYOU ZHANG, lterative point matching for registration of free-form curves
and surfaces, International Journal of Computer Vision (IJCV), 13 (1994),
pp. 119-152.

189



