Nothing Special   »   [go: up one dir, main page]

Benutzer: Gast  Login
Titel:

ConSLAM BIM and GT Poses

Dokumenttyp:
Forschungsdaten
Veröffentlichungsdatum:
04.06.2024
Verantwortlich:
Vega-Torres, Miguel-A.
Autorinnen / Autoren:
Vega-Torres, Miguel-A. ; Braun, Alexander; Borrmann, André
Institutionszugehörigkeit:
TUM
Herausgeber:
TUM
Identifikator:
doi:10.14459/2024mp1743877
Enddatum der Datenerzeugung:
15.03.2024
Fachgebiet:
BAU Bauingenieurwesen, Vermessungswesen; DAT Datenverarbeitung, Informatik; ELT Elektrotechnik; TEC Technik, Ingenieurwissenschaften (allgemein); VER Technik der Verkehrsmittel
Quellen der Daten:
Experimente und Beobachtungen / experiments and observations; Statistik und Referenzdaten / statistics and reference data
Andere Quellen der Daten:
Manual creation for the model and automatic for the poses
Datentyp:
mehrdimensionale Visualisierungen oder Modelle / models
Anderer Datentyp:
Industry Fundation Classes (IFC) and Revit model, and .TUM files with poses information
Methode der Datenerhebung:
3D geometric and semantic BIM model generated with Autodesk revit and the 6-degrees-of-freedom time-stammed poses resulted from our proposed SLAM2REF method: https://github.com/MigVega/SLAM2REF
Beschreibung:
The ConSLAM BIM and GT Poses comprehends the 3D building information model (in IFC and Revit formats), manually elaborated based on the terrestrial laser scanner of the sequence 2 of ConSLAM, and the refined grounth truth (GT) poses (in TUM format) of the sessions 2, 3, 4 and 5 of the open-access ConSLAM dataset. This dataset can be found here: https://github.com/mac137/ConSLAM
Links:
This dataset relates to the publication: https://doi.org/10.1007/s41693-024-00126-w
Schlagworte:
LiDAR; Multi-Session SLAM; Pose-Graph Optimization; Loop Closure; Long-term Mapping; Change Detection; BIM Update; 3D Indoor Localization and Mapping
Technische Hinweise:
View and download (71 MB total, 7 Files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1743877):
rsync rsync://m1743877@dataserv.ub.tum.de/m1743877/
Sprache:
en
Rechte:
by-nc, http://creativecommons.org/licenses/by-nc/4.0
Horizon 2020:
This research is part of the INTREPID project funded by EU's Horizon 2020 program (Grant agreement ID: 883345)
 BibTeX