Nothing Special   »   [go: up one dir, main page]

Scientists discover where the huge dinosaur-killing asteroid came from

The bringer of a mass extinction.
By  on 
A depiction of a large asteroid impacting Earth some 66 million years ago.
A depiction of a large asteroid impacting Earth some 66 million years ago. Credit: Mark Garlick / Science Photo Library / Getty Images

A menacing asteroid, some six miles wide, triggered Earth's last mass extinction. Now, scientists have found where it originated.

Unlike most space rocks that impact our planet today, this behemoth object came from beyond the gas giant Jupiter. It was a "C-type asteroid" — which are the dark, carbon-rich leftovers of the outer solar system — and the impact scattered the fateful object's remains all over Earth, some 66 million years ago.

It was "a projectile originating at the outskirts of the solar system and sealing the fate of the dinosaurs," Mario Fischer-Gödde, who researches the origin of asteroids and planets at the University of Cologne in Germany, told Mashable.

Fischer-Gödde led the new research, which was published in the peer-reviewed journal Science.

The asteroid left quite a mark. Today this impact zone is called the Chicxulub Crater, and is largely buried beneath the Yucatan Peninsula. The massive object struck in shallow water, blowing prodigious amounts of pulverized rock into the skies which drastically cooled the climate. A long, callous winter followed. Photosynthesis shut down. The food chain failed, and around 70 percent of Earth's species died. Though some dinosaurs survived.

Mashable Light Speed
Want more out-of-this world tech, space and science stories?
Sign up for Mashable's weekly Light Speed newsletter.
By clicking Sign Me Up, you confirm you are 16+ and agree to our Terms of Use and Privacy Policy.
Thanks for signing up!

A thin layer of sediment from this event, called the K-Pg boundary, is found around our planet. And one of the elements in it, ruthenium, is quite rare in Earth's crust, meaning that nearly 100 percent of the ruthenium in this widespread sediment sheet is from the infamous asteroid. Importantly, the researchers found the ruthenium isotopes (which are different types of ruthenium) in this telltale layer are similar to carbon-rich meteorites found all over Earth. What's more, the ruthenium samples didn't match the remnants of other major asteroid impacts, which came from objects formed in the inner solar system.

"We found that the composition of the asteroid that impacted at Chicxulub is the same as that of carbonaceous meteorites, which are fragments of carbonaceous (C-type) asteroids that originally formed beyond the orbit of Jupiter," Fischer-Gödde said.

Previous research suspected the culprit was a C-type asteroid, too, but didn't use ruthenium in the analyses. That's because making these ruthenium measurements is very difficult, and progressive technological advancements made the latest observations possible, Fischer-Gödde explained. Only three or so laboratories globally, including at the University of Cologne, can conduct this ultra-specialized research.

The C-type asteroid Mathilde as captured by the NEAR spacecraft on June 27, 1997. It's some 38 miles (61 kilometers) across.
The C-type asteroid Mathilde as captured by the NEAR spacecraft on June 27, 1997. It's some 38 miles (61 kilometers) across. Credit: NASA / JPL / JHUAPL
A depiction of an asteroid collision that likely lead to a mountain-sized rock heading towards Earth.
A depiction of an asteroid collision that likely lead to a mountain-sized rock heading towards Earth 66 million years ago. Credit: NASA / JPL-Caltech

As the solar system formed, many C-type asteroids came to inhabit the outskirts of the main asteroid belt, a ring containing millions of rocky objects between Mars and Jupiter. It's here the six-mile-wide Chicxulub impactor was probably propelled towards Earth. This was likely triggered by a collision between two asteroids, Fischer-Gödde explained. Or exposure to sunlight, causing a region on the space rock to heat up and release energy, could have given the asteroid a nudge (an outcome called the "Yarkovsky effect").

Such a huge collision with Earth, however, is extremely rare. A "dinosaur-killing" impact from a rock perhaps a half-mile across or larger happens on 100-million-year timescales. Astronomers have already found over 90 percent of the "planet-killer" asteroids that at times pass near Earth's neighborhood. There's no known threat of collision from these giant rocks for the next century; and the likelihood of an impact in the next thousand years is exceedingly low. (Meanwhile, impacts by objects around 460 feet in diameter occur every 10,000 to 20,000 years — an event that would be regionally devastating.)

Fortunately, should astronomers ever spot a large asteroid that threatens our humble world, NASA has successfully tested the first-ever endeavor to intentionally move an asteroid. It's a skill that needs significantly more refining, of course, but could prove useful in defending our civilization from future devastation.

NASA has never even needed to issue a warning about an incoming space rock, large or small. But if such an event ever transpires, you'll hear from the White House and many others — not just excitable tabloids.

Topics NASA

Mashable Image
Mark Kaufman
Science Editor

Mark is an award-winning journalist and the science editor at Mashable. After working as a ranger with the National Park Service, he started a reporting career after seeing the extraordinary value in educating people about the happenings on Earth, and beyond.

He's descended 2,500 feet into the ocean depths in search of the sixgill shark, ventured into the halls of top R&D laboratories, and interviewed some of the most fascinating scientists in the world.

You can reach Mark at [email protected].


Recommended For You
NASA's asteroid sample reveals key chemistry that could lead to life
Studying asteroid Bennu samples



NASA scientists want to solve a mystery: Why did life "turn left?"
An artist's rendering of a chain of amino acids


More in Science

Trending on Mashable
NYT Connections hints today: Clues, answers for March 7, 2025
A close-up of an NYT Connections game on a smartphone.

NYT Strands hints, answers for March 7
A game being played on a smartphone.

Wordle today: Answer, hints for March 7, 2025
A close-up of a Wordle game open on a smartphone.

Why are there no iPhones in 'Severance'?
By Jake Kleinman
John Turturro in "Severance."

NYT Mini crossword answers, hints for March 7, 2025
Close-up view of crossword puzzle.
The biggest stories of the day delivered to your inbox.
These newsletters may contain advertising, deals, or affiliate links. By clicking Subscribe, you confirm you are 16+ and agree to our Terms of Use and Privacy Policy.
Thanks for signing up. See you at your inbox!