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Abstract.
We evaluate key patterns and estimate throughput bounds of simulated transformation of

conventional high energy physics (HEP) data processing workflows to heterogeneous equivalents.
The simulation parameter space includes the number of offloaded tasks, CPU/accelerator ratios
of intra-task computations, offload latencies, and run time efficiency of offloaded computations.
The simulation is performed for a diverse set of state-of-the-art event reconstruction scenarios
from ATLAS, LHCb and CMS - the frontier HEP experiments of the Large Hadron Collider
project.

1. Introduction
The next generation of HPC and HTC facilities, such as Summit at Oak Ridge and Perlmutter
at NERSC, show an increasing use of GPUs and other accelerators in order to achieve their high
FLOP counts. This trend will only grow with exascale facilities such as A21. In general, high
energy physics (HEP) computing workflows have made little use of GPUs due to the relatively
small fraction of kernels that run efficiently on GPUs, and the expense of rewriting code for
rapidly evolving GPU hardware. However, the computing requirements for high-luminosity
Large Hadron Collider (LHC) are enormous, and it will become essential to be able to make use
of supercomputing facilities that rely heavily on GPUs and other accelerator technologies.

ATLAS [4] has already developed an extension to its multithreaded event processing
framework, that enables the non-intrusive offloading of computations to external accelerator
resources, and has begun investigating strategies to schedule the offloading efficiently. The
same applies to LHCb [5], which, while sharing with ATLAS Gaudi [1, 2] as the underlying
framework, has considerably different workflow. CMS [6]’s framework, CMSSW [7], also has the
ability to efficiently offload tasks to external accelerators. But before investing heavily in writing
many kernels for specific offloading architectures, we need to better understand the performance
metrics and throughput bounds of the workflows with various accelerator configurations. This
can be done by simulating a diverse set of workflows, using real metrics for task interdependencies
and timing, as we vary fractions of offloaded tasks, latencies, data conversion speeds, memory
bandwidths, and accelerator offloading parameters such as CPU/GPU ratios and speeds.
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We present the results of these studies performed on multiple workflows from ATLAS, LHCb
and CMS, which will be instrumental in directing effort to make HEP framework, kernels and
workflows run efficiently on exascale facilities.

2. The GAUDI framework
Gaudi is a cross-experiment software framework providing a common infrastructure for building
applications for HEP event data processing. The framework was designed around the principles
of composability and reusability allowing flexible plug-and-play assemblies of general-purpose
and specialized components. Gaudi-based applications span a broad range of HEP computing
tasks from event and detector simulation, event triggering, reconstruction and analysis to
detector alignment and calibration.

The Gaudi framework is used in several frontier HEP experiments among which are ATLAS
and LHCb - the two of four major experiments of the LHC, as well as FGST, DayaBay,
MINERνA and LZ. This makes Gaudi a high-impact testbed for studying various scenarios of
converting the state-of-the-art workflows of HEP data processing to workflows that can leverage
the heterogeneous nature of the next-generation supercomputer facilities.

3. Methodology
The dominant factors affecting throughput of a data processing workflow are the task timing,
the task precedence rules (i.e., control flow and data flow dependencies), as well as the policy
and efficiency of task scheduling applied to the workflow. In this study, we assumed that
sufficiently accurate evaluation of throughput bounds can be narrowed down to a simulation
of execution flow that captures the above mentioned factors. This methodology facilitates a
cross-experiment study that is abstract from experiment specific applications with all other
framework-level aspects being equal. The Gaudi framework – our testbed of choice – provided
most of the infrastructure for such a study.

First, we relied on the Python-based Gaudi scenario assembler [3] developed as part of
the Gaudi test infrastructure and used in an earlier similar study done for LHCb [8]. We
constructed configurable synthetic scenarios capturing the pertinent properties of the ATLAS,
LHCb and CMS state-of-the-art workflows (see Section 4). In the scenarios, we substituted
experiment-specific tasks with synthetic CPU-cruncher tasks that merely occupy the CPU with
intensive mathematical operations for a certain period of time. The run time with which each
CPU-cruncher task was allocated was determined by running the real workflows. CPU-cruncher
tasks were set to obey the precedence rules which accurately replicated those of the real tasks
they replaced, which included the control and data flow dependencies.

Second, we utilized the capacity of the Gaudi Avalanche Scheduler [8, 9] to schedule a
synthetic scenario by resolving prescribed task timing and precedence rules thus replicating a
regular data processing job. We then profiled the jobs in throughput scaling tests (see Section 5).

3.1. Simulating computational offloading
In the Gaudi framework, offloading all or part of computations of a task to an external
accelerator blocks the software thread executing the task until the accelerator has finished and
returned control to the task. The thread is idle while blocked, so we can simulate the offloading
behaviour by making the thread sleep for a certain period of time. This permits the Linux
kernel to suspend the idle software thread freeing the hardware resource for other tasks.

To explore the offloading phase space, we adjust the original task’s run-time torig with
three parameters: the fraction f of offloaded computations, the efficiency eff of running on
the accelerator (ie does it run slower or faster), and extra time textra to account for data
movement overheads. Thus, the CPU and offload time of adjusted tasks are tcpu = torig(1 − f)
and toffload = torigf(1 − eff ) + textra, respectively.
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3.2. Critical path analysis
The intra-event concurrency of the workflows is limited by the task precedence rules. As the
Avalanche Scheduler resolves the rules, it can trace the task-to-task execution flow and determine
the critical path (CP), which is a function of both the task precedence rules and individual task
run times. We have extracted the CP for all the scenarios and used that information to configure
the scenarios with selective on/off CP task offloading policies.

4. Scenarios
The ATLAS scenario (Figure 1, left) is based on a standard data processing workflow that
transforms the raw data from the ATLAS detector through a series of steps into objects useful for
physics analyses. This involves reconstructing the tracks of the particles that travelled through
the sensitive elements of the detector, determining their energies, and applying discriminators
to attempt to identify the types of particles. The source data that was used to extract the
timings of the tasks was taken from a real data during a standard run at nominal energy and
luminosity during the 2017 data taking period. A second data set was also used with the same
chain of tasks which was taken during a special run with a much higher than normal number of
interactions (µ ≈ 90) that begins to approximate running conditions during the HL-LHC period.

The CMS scenario (Figure 1, center) is based on the workflow used to transform raw data from
the CMS detector into quantities meaningful for physics studies. The transformations include
applying calibrations to the raw information and then applying many pattern recognition tasks
to the calibrated data in order to infer the presence of elementary particles, e.g. electrons or
photons, within the detector as well as physics quantities of those particles. This workflow is
referred to as reconstruction. This workflow is central to the computational work done by CMS
and requires the greatest amount of computational resources of all workflows. The task timings
used in this study were taken from an actual data processing job which was processing a fairly
representative data sample taken during 2018.

Similar to the cases of ATLAS and CMS, the LHCb scenario (Figure 1, right) is based on the
reconstruction workflow, where raw detector data is decoded and transformed into quantities
suitable for physics analysis. The sequence of tasks and their timings were extracted from one
of LHCb benchmarking jobs, referring to a typical sample of the 2017 data taking period.

5. Results
5.1. CP analysis
The total serial event processing times of the 4 different scenarios are shown in Table 1, as well
as the number of tasks in each workflow. ATLAS reconstruction spends approximately 57% of
its time on the CP (Figure 2) under normal Run 2 conditions. This number drops to 40% if
we disregard the tasks that perform I/O, which cannot be offloaded to an accelerator. The CP
comprises of only 10% of tasks. In the high-µ scenario, the event processing time increases by
almost a factor of 10 due to the much higher multiplicity, and the CP lengthens to 75%. LHCb
has much faster event processing times, due to the fact that the detector and associated event
size is much smaller, but has a comparable number of tasks and CP (3) percentage to ATLAS.
CMS reconstruction has almost twice as many tasks, but they tend to be smaller and due to the
more serial nature of the execution flow, has a comparably longer CP than ATLAS or LHCb.

Workflow All tasks CP tasks CP w/o I/O
ATLAS 309: 14.6s 20: 8.33s 17: 5.78s

ATLAS high µ 309: 127s 32: 95.7s 29: 85.7s
CMS 707: 13.4s 147: 8.38s 145: 7.32s
LHCb 282: 491ms 13: 259ms 11: 234ms

Table 1. Task counts
and timings for the differ-
ent workflows.
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Figure 1. Unified graph of control flow (CF) and data flow rules used in the event reconstruction
workflow of (left) ATLAS, (center) CMS and (right) LHCb experiments. Blue nodes represent
tasks, black ones denote data entities, while red nodes - CF decision nodes serving for CF
decisions aggregation. Larger blue nodes represent tasks that either don’t have any data inputs,
or that load initial data from disk. These nodes are the entry points for scheduling the graph.
The larger red node is the root CF decision hub, which is resolved the last in the process of
scheduling the graph at which point an event is considered processed.

Figure 2. CP of the ATLAS scenario for regular (left) and high µ (right) event data. Each
node represents a task, and is sized and colored proportionally to its run time (small and green
are fast tasks, while large and red are slow). The start- and end-tasks of each scenario are
marked. Despite identical task precedence rules, the CPs are different in each case due to the
different task timings. Visualizing the CP aids both in understanding the available concurrency
in a workflow, and in helping to identify where optimization or offloading could benefit.

5.2. Throughput analysis
In order to study the effects of offloading different tasks, we ran the simulation varying the
offloading efficiency and offloading fraction with different selections of offloaded tasks. We first
chose to investigate the difference between offloading tasks on the CP vs. those not on it. In
order to maximize the difference, we fixed the offloading fraction at 0.9, varied the offloading
efficiency between -0.75 and 0.75, and offloaded either all the tasks on the CP, or all the tasks
not on the CP. The results of this study, which was preformed with 35 threads devoted to task
scheduling on a machine with 40 hyperthreaded cores, can be seen in Figure 4, where we show
the event processing throughput, normalized to the serial event processing time, as a function of
the number of concurrent events. The dotted lines show the throughput when all CP tasks are
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Figure 3. CP of the CMS (left) and LHCb (right) scenarios. Notations repeat those of Figure 2.

offloaded, and the solid lines are for offloading the non-CP tasks. The thick line is a reference
with no task offloading. This plot shows that it will be much more beneficial to offload tasks that
are on the CP as opposed to those not on it. Furthermore, improving the accelerator performance
cf the CPU makes a larger difference with CP tasks. This is because if the accelerator takes
much longer to execute the task than the CPU, it has the effect of lengthening the CP. This
can be overcome by increasing the number of concurrent event, though this may be limited by
other system resource constraints.

Figure 4. Throughput
scaling for ATLAS sce-
nario, varying offloading
efficiency.

When the simulation is run with as many software threads as hardware threads, we see less
than full occupancy of the CPU, as the hardware threads associated with the offloaded tasks
are often idle, waiting for the accelerator to return (ie sleep to finish). In order to maximize
CPU occupancy, we need to oversubscribe the CPU with more software threads than hardware
threads. We simulated this by using taskset to limit the number of hardware threads to 10,
and increasing the number of software threads between 10 and 25. In Figures 5 and 6 we see
the dramatic benefit of oversubscribing the CPU for ranges of offloading efficiencies. We can
see that the combination of oversubscribing the CPU and increasing the number of concurrent
events allows us to overcome any accelerator inefficiencies, as the latency of the offloaded tasks
is hidden when the CPU is kept fully occupied with other work.

6. Conclusions
While the computational nature of any task will ultimately determine whether it can be
offloaded, knowing that offloading tasks on the CP has a greater effect on overall performance
will help choose which tasks to scrutinize. This filtering will be very useful as there are a large
number of tasks in each workflow. Furthermore, these studies have shown that even if the task
runs more slowly on the accelerator than the CPU, it is still beneficial to offload it. If tasks that
are not on the CP are chosen to be offloaded, our studies have shown that it may be necessary
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Figure 5. Throughput scaling for ATLAS scenario for regular (left) and high µ (right) event
data, varying offloading efficiency from −0.75 to 0.75, with 10 and 25 software threads.

Figure 6. Throughput scaling for LHCb (left) and CMS (right), varying offloading efficiency
from −0.75 to 0.75, with 10 and 25 software threads.

to increase the number of concurrently scheduled events to maximize throughput. We have also
shown that when using the Gaudi framework, it is essential to oversubscribe the CPU with more
software threads than hardware threads in order to keep the CPU fully occupied with useful
work while the threads that mange the offloaded tasks wait. Ultimately, offloading any task will
improve performance, though careful tuning of the number of concurrent events and threads is
required to maximize performance without negatively impacting other system resources.
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