Nothing Special   »   [go: up one dir, main page]

Home

On the Semantic Expressiveness of Iso- and Equi-Recursive Types


Recursive types extend the simply-typed lambda calculus (STLC) with the additional expressive power to enable diverging computation and to encode recursive data-types (e.g., lists). Two formulations of recursive types exist: iso-recursive and equi-recursive. The relative advantages of iso- and equi-recursion are well-studied when it comes to their impact on type-inference. However, the relative semantic expressiveness of the two formulations remains unclear so far. This paper studies the semantic expressiveness of STLC with iso- and equi-recursive types, proving that these formulations are equally expressive. In fact, we prove that they are both as expressive as STLC with only term-level recursion. We phrase these equi-expressiveness results in terms of full abstraction of three canonical compilers between these three languages (STLC with iso-, with equi-recursive types and with term-level recursion). Our choice of languages allows us to study expressiveness when interacting over both a simply-typed and a recursively-typed interface. The three proofs all rely on a typed version of a proof technique called approximate backtranslation. Together, our results show that there is no difference in semantic expressiveness between STLCs with iso- and equi-recursive types. In this paper, we focus on a simply-typed setting but we believe our results scale to more powerful type systems like System F.


Published on November 14, 2024
Asynchronous Session-Based Concurrency: Deadlock-freedom in Cyclic Process Networks


We tackle the challenge of ensuring the deadlock-freedom property for message-passing processes that communicate asynchronously in cyclic process networks. Our contributions are twofold. First, we present Asynchronous Priority-based Classical Processes (APCP), a session-typed process framework that supports asynchronous communication, delegation, and recursion in cyclic process networks. Building upon the Curry-Howard correspondences between linear logic and session types, we establish essential meta-theoretical results for APCP, most notably deadlock freedom. Second, we present a new concurrent $\lambda$-calculus with asynchronous session types, dubbed LASTn. We illustrate LASTn by example and establish its meta-theoretical results; in particular, we show how to soundly transfer the deadlock-freedom guarantee from APCP. To this end, we develop a translation of terms in LASTn into processes in APCP that satisfies a strong formulation of operational correspondence.


Published on November 13, 2024
On the relative asymptotic expressivity of inference frameworks


We consider logics with truth values in the unit interval $[0,1]$. Such logics are used to define queries and to define probability distributions. In this context the notion of almost sure equivalence of formulas is generalized to the notion of asymptotic equivalence. We prove two new results about the asymptotic equivalence of formulas where each result has a convergence law as a corollary. These results as well as several older results can be formulated as results about the relative asymptotic expressivity of inference frameworks. An inference framework $\mathbf{F}$ is a class of pairs $(\mathbb{P}, L)$, where $\mathbb{P} = (\mathbb{P}_n : n = 1, 2, 3, \ldots)$, $\mathbb{P}_n$ are probability distributions on the set $\mathbf{W}_n$ of all $\sigma$-structures with domain $\{1, \ldots, n\}$ (where $\sigma$ is a first-order signature) and $L$ is a logic with truth values in the unit interval $[0, 1]$. An inference framework $\mathbf{F}'$ is asymptotically at least as expressive as an inference framework $\mathbf{F}$ if for every $(\mathbb{P}, L) \in \mathbf{F}$ there is $(\mathbb{P}', L') \in \mathbf{F}'$ such that $\mathbb{P}$ is asymptotically total variation equivalent to $\mathbb{P}'$ and for every $\varphi(\bar{x}) \in L$ there is $\varphi'(\bar{x}) \in L'$ such that $\varphi'(\bar{x})$ is asymptotically equivalent to $\varphi(\bar{x})$ with respect to $\mathbb{P}$. This relation is a preorder. If, in addition, $\mathbf{F}$ is at least as expressive as $\mathbf{F}'$ then […]


Published on November 12, 2024
Termination of Graph Transformation Systems Using Weighted Subgraph Counting


We introduce a termination method for the algebraic graph transformation framework PBPO+, in which we weigh objects by summing a class of weighted morphisms targeting them. The method is well-defined in rm-adhesive quasitoposes (which include toposes and therefore many graph categories of interest), and is applicable to non-linear rules. The method is also defined for other frameworks, including SqPO and left-linear DPO, because we have previously shown that they are naturally encodable into PBPO+ in the quasitopos setting. We have implemented our method, and the implementation includes a REPL that can be used for guiding relative termination proofs.


Published on November 12, 2024
Stochastic Processes with Expected Stopping Time


Markov chains are the de facto finite-state model for stochastic dynamical systems, and Markov decision processes (MDPs) extend Markov chains by incorporating non-deterministic behaviors. Given an MDP and rewards on states, a classical optimization criterion is the maximal expected total reward where the MDP stops after T steps, which can be computed by a simple dynamic programming algorithm. We consider a natural generalization of the problem where the stopping times can be chosen according to a probability distribution, such that the expected stopping time is T, to optimize the expected total reward. Quite surprisingly we establish inter-reducibility of the expected stopping-time problem for Markov chains with the Positivity problem (which is related to the well-known Skolem problem), for which establishing either decidability or undecidability would be a major breakthrough. Given the hardness of the exact problem, we consider the approximate version of the problem: we show that it can be solved in exponential time for Markov chains and in exponential space for MDPs.


Published on November 12, 2024

Managing Editors

 

Stefan Milius
Editor-in-Chief

Brigitte Pientka
Fabio Zanasi
Executive Editors


Editorial Board
Executive Board
Publisher

eISSN: 1860-5974


Logical Methods in Computer Science is an open-access journal, covered by SCOPUS, DBLPWeb of Science, Mathematical Reviews and Zentralblatt. The journal is a member of the Free Journal Network. All journal content is licensed under a Creative Commons license.