Nothing Special   »   [go: up one dir, main page]

Skip to main content

Culturing and Differentiating Human Mesenchymal Stem Cells for Biocompatible Scaffolds in Regenerative Medicine

  • Protocol
  • First Online:
Human Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 806))

Abstract

Mesenchymal stem cells from a variety of sites are a natural resource that using appropriate skills can be cultured in the laboratory, in scaffolds, to provide differentiated-cell replacement tissues, for clinical application. To perform such work with human cells, strict ethical integrity must be observed at all stages. Adipocytes, osteocytes and chrondrocytes are amongst the most desirable end-point cells. Hydrolytic degradable scaffolds allow implanted cells to synthesise their own extracellular matrix in situ after implantation, degeneration of the foreign scaffold to temporally match creation of the new innate one. For preliminary in vitro stem cell differentiation protocols, initial investigation is commonly performed with stem cells in commercially available porous collagen sponges or cell-free small intestinal submucosa. Differentiation of stem cells to a specific phenotype is achieved by culturing them in apposite culture media under precise conditions. Once the cells have differentiated, they are checked and characterised in a wide variety of systems. This chapter describes differentiation media for adipocytes, osteocytes, chondrocytes, myocytes and neural precursors and methods of observing their characteristics by microscopy using phase contrast microscopy, standard light microscopy and electron microscopy with tinctorial, immunocytochemical and electron dense stains, respectively. Cell sorting techniques are not dealt with here. Immunocytochemistry/microscopy staining for specific differentiated-cell antigens is an invaluable procedure, and the range of commercially available antibodies is wide. Precautions need to be considered for using actively proliferating cells in vivo, so that implanted cells remain controlled by the body’s molecular signals and avoid development of malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sarraf, C.E., Harris, A.B., McCulloch, A.D. and Eastwood, M. (2002) Tissue engineering of biological cardiovascular system surrogates. Heart Lung Circ. 11, 142–150.

    Article  PubMed  Google Scholar 

  2. Du, M., Yin, J. and, Zhu, M.J. (2010) Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Meat Sci. 86, 103–109.

    Google Scholar 

  3. Owen, M.E., Cavé, J. and Joiner, C.J. (1987) Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci. 87, 731–738.

    PubMed  Google Scholar 

  4. Gazit, D., Karmish, M., Holzman, L. and Bab, I. (1990) Regenerating marrow induces systemic increase in osteo- and chondrogenesis. Endocrinology 126, 2607–2613.

    Article  PubMed  CAS  Google Scholar 

  5. Hoerstrup, S.P., Sodian, R., Daebritz, S., Wang, J., Bacha, E.A., Martin, D.P. et al. (2000) Functional living tri-leaflet heart valves grown in vitro. Circulation 102 (3), 11144–11149.

    Google Scholar 

  6. Schmidt, D., Dijkman, P.E., Driessen-Mol, A., Stenger, R., Mariani, C., Puolakka, A. et al (2010) Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56, 510–520.

    Article  PubMed  Google Scholar 

  7. Sahoo, S., Lok Toh, S. and Hong Goh, J.C. (2010) PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 95(1), 19–28.

    PubMed  Google Scholar 

  8. Babaeijandaghi, F., Shabani, I., Seyedjafari, E., Safaei Naraghi, Z., Vasei, M. and Haddadi-Asi, V. et al. (2010) Accelerated epidermial regerneration and improved dermal reconstruction achieved by polyethersulfone nanofibres. Tissue Engineering Part A. 16(11), 3527–3536.

    Article  PubMed  CAS  Google Scholar 

  9. Matheny, R.G., Hutchison, M.L., Dryden, P.E., Hiles, M.D., Shaar, C.J. (2000) Porcine small intestine submucosa as a pulmonary valve leaflet substitute. J. Heart Valve Dis. 9, 769–774.

    PubMed  CAS  Google Scholar 

  10. Bader, A. and Macchiarini, P. (2010) Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach. J. Cell Mol. Med. 14(7), 1877–1889.

    Article  PubMed  CAS  Google Scholar 

  11. Lin, N., Lin, J., Liu, B., Weidong, P., Chen, S., Xu, R. (2010) Differentiation of bone marrow-derived mesenchymal stem cells into hepatocye-like cells in an alginate scaffold. Cell Proliferation 43(5), 427–434.

    Article  PubMed  CAS  Google Scholar 

  12. Liu, T., Teng, W.K., Chan, B.P., Chew, S.Y. (2010)Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterisation and neural stem cell interactions. J. Biomed. Mater. Res A. 95(1), 276–282.

    PubMed  Google Scholar 

  13. Bianco, A., Del Gaudio, C., Baiguera, S., Armentano, I, Bertarelli C., and Dottori, M. (2010) Microstructure and cytocompatability of electrospun nanocomposites based on poly (epsilon-caprolactone) and carbon nanostructures. Int. J. Artif. Organs 33, 271–282.

    PubMed  CAS  Google Scholar 

  14. Sarraf, C.E., Harris, A.B., McCulloch, A.D. and Eastwood M (2002) Tissue engineering of cardiovascular system surrogates. Heart Lung Circ. 11, 142–150.

    Article  PubMed  Google Scholar 

  15. Sun, L-Y., Hsieh, D-K., Syu, W-S., Li, Y-S., Chiu, H-T., Chiou, T-W. (2010) Cell proliferation of human bone marrow mesenchymal stem cells on biodegradable microcarriers enhances in vitro differentiation potential. Cell Proliferation 43(5), 445–456.

    Article  PubMed  CAS  Google Scholar 

  16. Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G. Moreau, J. et al. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 15, 688–690.

    Article  Google Scholar 

  17. Dick, E., Rajamohan, D., Ronksley, J. and Denning, C. (2010) Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem. Soc. Trans. 38, 1037–1045.

    Article  PubMed  CAS  Google Scholar 

  18. Carrasco de Paula, I. (2008) General principles regarding the use of adult stem cells. Cell Prolif. 41(1), 78–84.

    PubMed  Google Scholar 

  19. Gluckman, E. (2000) Ethical and legal aspects of placental/cord blood banking and transplant. Eurocord Netcord Organisation. Hematol. J. 1, 67–69.

    Google Scholar 

  20. Friedenstein, A. J., Gorskaja, J.F. and Kulagina, N.N. (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267–274.

    PubMed  CAS  Google Scholar 

  21. von Drygalski, A. and Adamson, J.W. (2000) Placental/umbilical cord blood (PCB) stem cells for transplantation: early clinical outcomes and the status of ex vivo expansion strategies. Keio J. Med. 49, 141–151.

    Article  Google Scholar 

  22. Sasayama, N., Kashiwakura, I., Tokushima, Y., Wada, S., Murakami, M. Hayase, Y. et al. (2001) Expansion of megakaryocyte progenitors from cryopreserved leukocyte concentrates of human placental and umbilical cord blood in short-term liquid culture. Cytotherapy 3, 117–126.

    Article  PubMed  CAS  Google Scholar 

  23. Mizuno, H. and Hyakusoku, H. (2001). Fat grafting to the breast and adipose-derived stem cells: recent scientific consensus and controversy. Aesthet. Surg. J. 30, 387–389.

    Google Scholar 

  24. Thalmeier, K., Meissner, P., Moosmann, S., Sagebiel, S., Wiest, I., Huss, R. (2001) Mesenchymal differentiation and organ distribution of established human stromal cell lines in NOD/SCID mice. Acta Haematol.105(3), 159–165.

    Article  PubMed  CAS  Google Scholar 

  25. Quirici, N., Scavullo, C., de Girolamo, L., Lopa, S., Arrigoni, E., Deliliers, G.L., Brini, A.T. (2010) Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells Dev. 19, 915–925.

    Article  PubMed  CAS  Google Scholar 

  26. Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Gearing, D.P., Wagner, E.F., Metcalf, D., Nicola, N.A., Gough, N.M. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 336(6200), 684–687.

    Article  PubMed  CAS  Google Scholar 

  27. Lennon, D.P., Haynesworth, S.E., Young, R.G., Dennis, J.E., Caplan, A.I. (1995) A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp. Cell Res. 219, 211–222.

    Article  PubMed  CAS  Google Scholar 

  28. Otto, W.R., Rao, J. (2004)Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif. 37, 97–110.

    Article  PubMed  CAS  Google Scholar 

  29. Jung, S., Sen, A., Rosenberg, L., Behiel, L.A. (2010) Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells. Cytotherapy 12, 637–657.

    Article  PubMed  CAS  Google Scholar 

  30. Lindner, U., Kramer, J., Behrends, J., Driller, B., Wendler, N.-O., Boehrnsen, F., Rohwedel, J., Schlenke, P. (2010) Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement-membrane extracellular matrix proteins. Cytotherapy 12(8), 992–1005.

    Article  PubMed  CAS  Google Scholar 

  31. Xu, W., Zhang, X., Qian, H., Zhu, W., Sun, X., Hu, J. et al. (2004) Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp. Biol. Med. 229, 623–631.

    CAS  Google Scholar 

  32. Takahashi, T., Lord, B., Schulze, P.C., Fryer, R.M., Sarang, S.S., Gullans, S.R., Lee, R.T. (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107, 1912–1916.

    Article  PubMed  CAS  Google Scholar 

  33. Sittichokechaiwut, A., Edwards, J.H., Scutt, A.M., Reilly, G.C. (2010) Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cell. Eur. Cell Mater. 20, 45–57.

    PubMed  CAS  Google Scholar 

  34. Anand, U., Otto, W.R., Casula, M.A., Day, N.C., Davis, J.B., Bountra, C., Birch, R., Anand, P. (2006) The effect of neurotrophic factors on morphology, TRPV1 expression and capsaicin responses of cultured human DRG sensory neurons. Neurosci. Lett. 399, 51–56.

    Article  PubMed  CAS  Google Scholar 

  35. Lunn, G., Lawler, G. (2003) Unit 2A: Laboratory Safety, in Current Protocols in Protein Science, John Wiley & Sons, Chichester, UK. DOI: 10.1002/0471140864.psa02as28.

Additional Reading

  • IHCWorld: http://www.ihcworld.com/_protocols/em/em_routine_tissue.htm Routine transmission electron microscopy staining protocol for tissues: Reynold’s Lead Citrate Solution. Visited 20.9.10.

  • Page KM (1982) Bone and the preparation of bone sections, in Bancroft, JD and Stevens A (Eds) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh, pp 297–331.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank George Elia (CRUK, London) for exemplary histochemical expertise, Dr Uma Anand (Imperial College, London) for advice on neuronal cell culture, Professor Ketan Patel and Dr Anthony Otto (Reading University) for muscle cell growth conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Sarraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Otto, W.R., Sarraf, C.E. (2012). Culturing and Differentiating Human Mesenchymal Stem Cells for Biocompatible Scaffolds in Regenerative Medicine. In: Mitry, R., Hughes, R. (eds) Human Cell Culture Protocols. Methods in Molecular Biology, vol 806. Humana Press. https://doi.org/10.1007/978-1-61779-367-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-367-7_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-366-0

  • Online ISBN: 978-1-61779-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics