Nothing Special   »   [go: up one dir, main page]

Skip to main content

AFM-Based Single-Molecule Force Spectroscopy of Proteins

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

  • 3064 Accesses

Abstract

Single-molecule force spectroscopy by AFM (AFM-SMFS) is an experimental methodology that allows unequivocal sensitivity and control for investigating and manipulating the mechanical properties of single molecules. The past 20 years of AFM-SMFS has provided numerous breakthroughs in the understanding of the mechanical properties and force-induced structural rearrangements of sugars, DNA, and proteins. Here, we focus on the application of AFM-SMFS to study proteins, since AFM-SMFS has succeeded in providing abundant information about protein folding pathways, kinetics, interactions, and misfolding. In this chapter we describe the experimental procedures for conducting a SMFS-AFM experiment—including purification of protein samples, setup and calibration of the AFM instrumentation, and the thorough and unbiased analysis of resulting AFM data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112

    Article  CAS  PubMed  Google Scholar 

  2. Florin E-L, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264(5157):415–417

    Article  CAS  PubMed  Google Scholar 

  3. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A 93(8):3477–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci U S A 96(7):3694–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marszalek PE, Lu H, Li H, Carrion-Vazquez M (1999) Mechanical unfolding intermediates in titin modules. Nature 402(6757):100

    Article  CAS  PubMed  Google Scholar 

  6. Oberhauser AF, Marszalek PE, Carrion-Vazquez M, Fernandez JM (1999) Single protein misfolding events captured by atomic force microscopy. Nat Struct Mol Biol 6(11):1025–1028

    Article  CAS  Google Scholar 

  7. Hoffmann T, Dougan L (2012) Single molecule force spectroscopy using polyproteins. Chem Soc Rev 41(14):4781–4796

    Article  CAS  PubMed  Google Scholar 

  8. Žoldák G, Rief M (2013) Force as a single molecule probe of multidimensional protein energy landscapes. Curr Opin Struct Biol 23(1):48–57. https://doi.org/10.1016/j.sbi.2012.11.007

    Article  PubMed  CAS  Google Scholar 

  9. Müller DJ, Dufrene YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3(5):261–269

    Article  CAS  PubMed  Google Scholar 

  10. Javadi Y, Fernandez JM, Perez-Jimenez R (2013) Protein folding under mechanical forces: a physiological view. Physiology 28(1):9–17

    Article  CAS  PubMed  Google Scholar 

  11. Ott W, Jobst MA, Schoeler C, Gaub HE, Nash MA (2017) Single-molecule force spectroscopy on polyproteins and receptor–ligand complexes: the current toolbox. J Struct Biol 197(1):3–12

    Article  CAS  PubMed  Google Scholar 

  12. Rico F, Rigato A, Picas L, Scheuring S (2013) Mechanics of proteins with a focus on atomic force microscopy. J Nanobiotechnol 11(1):S3

    Article  Google Scholar 

  13. Schönfelder J, De Sancho D, Perez-Jimenez R (2016) The power of force: insights into the protein folding process using single-molecule force spectroscopy. J Mol Biol 428(21):4245–4257. https://doi.org/10.1016/j.jmb.2016.09.006

    Article  PubMed  CAS  Google Scholar 

  14. Scholl ZN, Josephs EA, Marszalek PE (2016) Modular, nondegenerate polyprotein scaffolds for atomic force spectroscopy. Biomacromolecules 17(7):2502–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Florin E-L, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE (1995) Sensing specific molecular interactions with the atomic force microscope. Biosens Bioelectron 10(9):895–901

    Article  CAS  Google Scholar 

  16. Burnham N, Chen X, Hodges C, Matei G, Thoreson E, Roberts C, Davies M, Tendler S (2002) Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14(1):1

    Article  Google Scholar 

  17. Bouchiat C, Wang M, Allemand J-F, Strick T, Block S, Croquette V (1999) Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys J 76(1):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Dudko OK (2013) A transformation for the mechanical fingerprints of complex biomolecular interactions. Proc Natl Acad Sci U S A 110(41):16432–16437. https://doi.org/10.1073/pnas.1309101110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scholl ZN, Yang W, Marszalek PE (2014) Chaperones rescue luciferase folding by separating its domains. J Biol Chem 289(41):28607–28618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edwards DT, Perkins TT (2017) Optimizing force spectroscopy by modifying commercial cantilevers: improved stability, precision, and temporal resolution. J Struct Biol 197(1):13–25

    Article  PubMed  Google Scholar 

  21. Rabbi M, Marszalek PE (2007) Construction of a single-axis molecular puller for measuring polysaccharide and protein mechanics by atomic force microscopy. Cold Spring Harb Protoc 2007(12.) pdb. prot4899

    Google Scholar 

  22. Scholl ZN (2016) The (un) folding of multidomain proteins through the lens of single-molecule force-spectroscopy and computer simulation. Dissertation, Duke University

    Google Scholar 

  23. Pawlak K, Strzelecki J (2016) Nanopuller-open data acquisition platform for AFM force spectroscopy experiments. Ultramicroscopy 164:17–23

    Article  CAS  PubMed  Google Scholar 

  24. Scholl ZN, Marszalek PE (2014) Improving single molecule force spectroscopy through automated real-time data collection and quantification of experimental conditions. Ultramicroscopy 136:7–14

    Article  CAS  PubMed  Google Scholar 

  25. Popa I, Rivas-Pardo JA, Eckels EC, Echelman DJ, Badilla CL, Valle-Orero J, Fernández JM (2016) A halotag anchored ruler for week-long studies of protein dynamics. J Am Chem Soc 138(33):10546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28(26):8759–8770. https://doi.org/10.1021/ma00130a008

    Article  CAS  Google Scholar 

  27. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265(5178):1599–1600

    Article  CAS  PubMed  Google Scholar 

  28. Scholl ZN, Li Q, Marszalek PE (2014) Single molecule mechanical manipulation for studying biological properties of proteins, DNA, and sugars. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(3):211–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant MCB-1517245 to P.E.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr E. Marszalek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scholl, Z.N., Marszalek, P.E. (2018). AFM-Based Single-Molecule Force Spectroscopy of Proteins. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics