Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Weighted Pseudo-Almost Periodic Solutions for Shunting Inhibitory Cellular Neural Networks on Time Scales

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, by using the exponential dichotomy of linear dynamic equations on time scales, a fixed point theorem and the theory of calculus on time scales, we obtain sufficient conditions for the existence, uniqueness and global exponential stability of weighted pseudo-almost periodic solutions of a class of shunting inhibitory cellular neural networks with mixed delays on time scales. A numerical example is also presented to illustrate the feasibility of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouzerdoum A.: Nonlinear Lateral Inhibitory Neural Networks, Analysis and Application to Motion Detection. Ph.D. thesis, University of Washington (1991)

  2. Bouzerdoum, A., Pinter, R.B.: Shunting inhibitory cellular neural networks, derivation and stability analysis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40, 215–221 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouzerdoum A.: Convergence of symmetric shunting competitive neural networks. Complex. Int. (electronic only) 1 (1994)

  4. Liu, C.C., Peng, J., Li, Y.K.: Exponential stability of periodic solution for shunting inhibitory CNNs with delays. Pure Appl. Math. 21, 335–340 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Yang, X.S.: Existence and global exponential stability of periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks with delays and impulse. Neurocomputing 72, 2219–2226 (2009)

    Article  Google Scholar 

  6. Cai, M.S., Zhang, H., Yuan, Z.H.: Positive almost periodic solutions for shunting inhibitory cellular neural networks with time-varying delays. Math. Comput. Simul. 78, 548–558 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shao, J.Y., Wang, L.J., Ou, C.X.: Almost periodic solutions for shunting inhibitory cellular neural networks without global Lipschitz activity functions. Appl. Math. Model. 33, 2575–2581 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zuo, Y., Wang, Y.N., Huang, L.H., Li, C.S.: Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with distributed delays and large impulses. J. Korean Math. Soc. 46, 1071–1085 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, L.N., Lin, Y.P.: Global exponential stability for shunting inhibitory CNNs with delays. Appl. Math. Comput. 214(1), 297–303 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Li, L., Fang, Z., Yang, Y.Q.: A shunting inhibitory cellular neural network with continuously distributed delays of neutral type. Nonlinear Anal. Real World Appl. 13(3), 1186–1196 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, H.S., Ye, G.R.: Exponential convergence of solutions of SICNNS with mixed delays. Electron. J. Differ. Equ. 41, 1–7 (2009)

    MathSciNet  MATH  Google Scholar 

  12. M’hamdi, M.S., et al.: Weighted pseudo almost-periodic solutions of shunting inhibitory cellular neural networks with mixed delays. Acta Math. Sci. 36(6), 1662–1682 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hilger S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg (1988)

  14. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser Boston Inc, Boston (2003)

    Book  MATH  Google Scholar 

  15. Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Result. Math. 35(1), 3–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Atici, F.M., Eloe, P.W., Kaymakcalan, B.: The quasilinearization method for boundary value problems on time scales. J. Math. Anal. Appl. 276(1), 357–372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bohner, M., Wintz, N.: The Kalman filter for linear systems on time scales. J. Math. Anal. Appl. 406(2), 419–436 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Akhmet, M.U., Turan, M.: The differential equations on time scales through impulsive differential equations. Nonlinear Anal. Theory Methods Appl. 65(11), 2043–2060 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, C., Agarwal, R.P.: Changing-periodic time scales and decomposition theorems of time scales with applications to functions with local almost periodicity and automorphy. Adv. Differ. Equ. 2015, 296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y.K., Wang, C.: Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales. Abstract Appl. Anal., Art. ID 341520, pp. 22 (2011)

  21. Li Y.K., Wang C.: Almost periodic functions on time scales and applications. Discrete Dyn. Nat. Soc., Art. ID 727068, pp. 20 (2011)

  22. Bohner, M., Guseinov, G.S.: Double integral calculus of variations on time scales. Comput. Math. Appl. 54(1), 45–57 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, J., Wang, Q.R., Zhang, L.W.: Existence and stability of almost periodic solutions for cellular neural networks with time-delays in leakage terms on time scales. Appl. Math. Comput. 237, 639–649 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Gao, J., Wang, Q.R., Lin, Y.: Existence and exponential stability of almost-periodic solutions for neutral BAM neural networks with time-varying delays in leakage terms on time scales. Math. Methods Appl. Sci. 39(6), 1361–1375 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees and the editors for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiru Wang.

Additional information

Shangjiang Guo.

Supported by the NNSF of China (No. 11671406)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wang, Q. Weighted Pseudo-Almost Periodic Solutions for Shunting Inhibitory Cellular Neural Networks on Time Scales. Bull. Malays. Math. Sci. Soc. 42, 2055–2074 (2019). https://doi.org/10.1007/s40840-017-0595-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0595-4

Keywords

Navigation