Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Multi-attribute Decision-Making Approach Based on Spherical Fuzzy Sets for Yunnan Baiyao’s R&D Project Selection Problem

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

As we all know, the research and development (R&D) is crucial for enterprises. How to choose the R&D project is an important research topic, and at the same time, it is also a typical multi-attribute decision-making (MADM) problem. In this paper, we propose a novel MADM method for selecting the Yunnan Baiyao’s R&D project of toothpastes. Firstly, we use T-spherical fuzzy sets (T-SFSs) to express the evaluation information of the toothpastes from decision makers to overcome the shortcomings existing that the traditional information form may cause information distortion. Secondly, we extend the generalized Maclaurin symmetric mean (GMSM) operator to T-spherical fuzzy environment and propose the T-spherical fuzzy GMSM operator (T-SFGMSM) and the T-spherical fuzzy weighted GMSM operator (T-SFWGMSM), where these operators are suitable for the situation which the input information is interrelated. Further, we put forward a novel MADM approach for selecting toothpaste product based upon the T-SFWGMSM operator, which can not only handle a more extensive scope of fuzzy information, but also process the interrelationships between multiple attributes. Lastly, we solve a R&D project selection problem for Yunnan Baiyao Co., Ltd. by the proposed method and make a detailed comparative analysis with other MADM methods to demonstrate the effectiveness and superiority of the novel approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amiri, M.P.: Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert Syst. Appl. 37(9), 6218–6224 (2010)

    Article  Google Scholar 

  3. Cuòng, B.C.: Picture fuzzy sets. J. Comput. Sci. Cybernet. 30(4), 409 (2014)

    Google Scholar 

  4. Collan, M., Luukka, P.: Evaluating R&D projects as investments by using an overall ranking from four new fuzzy similarity measure-based TOPSIS variants. IEEE Trans. Fuzzy Syst. 22(3), 505–515 (2014)

    Article  Google Scholar 

  5. Chen, S.M., Chang, C.H.: A novel similarity measure between Atanassov’s intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition. Inf. Sci. 291, 96–114 (2015)

    Article  Google Scholar 

  6. Chen, T.Y.: Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Inf. Sci. 261, 149–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)

    Article  MATH  Google Scholar 

  8. Eilat, H., Golany, B., Shtub, A.: R&D project evaluation: an integrated DEA and balanced scorecard approach. Omega 36(5), 895–912 (2008)

    Article  Google Scholar 

  9. Huang, C.C., Chu, P.Y., Chiang, Y.H.: A fuzzy AHP application in government-sponsored R&D project selection. Omega 36(6), 1038–1052 (2008)

    Article  Google Scholar 

  10. Hassanzadeh, F., Collan, M., Modarres, M.: A practical approach to R&D portfolio selection using the fuzzy pay-off method. IEEE Trans. Fuzzy Syst. 20(4), 615–622 (2012)

    Article  Google Scholar 

  11. Jia, F., Liu, Y.Y., Wang, X.Y.: An extended MABAC method for multi-criteria group decision making based on intuitionistic fuzzy rough numbers. Expert Syst. Appl. 127, 241–255 (2019)

    Article  Google Scholar 

  12. Jung, U., Seo, D.W.: An ANP approach for R&D project evaluation based on interdependencies between research objectives and evaluation criteria. Decis. Support Syst. 49(3), 335–342 (2010)

    Article  Google Scholar 

  13. Karasakal, E., Aker, P.: A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem. Omega 73, 79–92 (2017)

    Article  Google Scholar 

  14. Klapka, J., Piňos, P.: Decision support system for multicriterial R&D and information systems projects selection. Eur. J. Oper. Res. 140(2), 434–446 (2002)

    Article  MATH  Google Scholar 

  15. Liu, P.D., Chen, S.M.: Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers. IEEE Trans. Cybernet. 47(9), 2514–2530 (2017)

    Article  Google Scholar 

  16. Liu, P.D., Chen, S.M., Wang, P.: Multiple-attribute group decision-making based on q-Rung orthopair fuzzy power maclaurin symmetric mean operators. IEEE Trans. Syst. Man Cybernet. Syst. 99, 1–16 (2018)

    Google Scholar 

  17. Liu, P.D., Cheng, S.F., Zhang, Y.M.: An extended multi-criteria group decision-making PROMETHEE method based on probability multi-valued neutrosophic sets. Int. J. Fuzzy Syst. 21, 1–19 (2018)

    Google Scholar 

  18. Liu, P.D., Liu, J.L.: Some q-Rung Orthopai fuzzy bonferroni mean operators and their application to multi-attribute group decision making. Int. J. Intell. Syst. 33(2), 315–347 (2018)

    Article  Google Scholar 

  19. Liu, P.D., Teng, F.: Probabilistic linguistic TODIM method for selecting products through online product reviews. Inf. Sci. 485, 441–455 (2019)

    Article  Google Scholar 

  20. Liu, P.D., Wang, P.: Some interval-valued intuitionistic fuzzy Schweizer-Sklar power aggregation operators and their application to supplier selection. Int. J. Syst. Sci. 49(6), 1188–1211 (2018)

    Article  MathSciNet  Google Scholar 

  21. Liu, P.D., Wang, P.: Multiple-attribute decision making based on Archimedean Bonferroni operators of q-Rung Orthopair fuzzy numbers. IEEE Trans. Fuzzy Syst. 27(5), 834–848 (2019)

    Article  Google Scholar 

  22. Liu, P.D.: Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to Group Decision Making. IEEE Trans. Fuzzy Syst. 22(1), 83–97 (2014)

    Article  Google Scholar 

  23. Milosevic, P., Petrovic, B., Jeremic, V.: IFS-IBA similarity measure in machine learning algorithms. Expert Syst. Appl. 89, 296–305 (2017)

    Article  Google Scholar 

  24. T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput. Appl. (2018) 1–13. https://doi.org/10.1007/s00521-018-3521-2

  25. Qin, J.D., Liu, X.W.: An approach to intuitionistic fuzzy multiple attribute decision making based on Maclaurin symmetric mean operators. J. Intell. Fuzzy Syst. 27(5), 2177–2190 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Relich, M., Pawlewski, P.: A fuzzy weighted average approach for selecting portfolio of new product development projects. Neurocomputing 231, 19–27 (2017)

    Article  Google Scholar 

  27. Son, L.H.: Generalized picture distance measure and applications to picture fuzzy clustering. Appl. Soft Comput. 46(C), 284–295 (2016)

    Article  Google Scholar 

  28. Sennaroglu, B., Celebi, G.V.: A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transp. Res. Part D Transp. Environ. 59, 160–173 (2018)

    Article  Google Scholar 

  29. Thong, N.T.: HIFCF: an effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy recommender systems for medical diagnosis. Expert Syst. Appl. 42(7), 3682–3701 (2015)

    Article  Google Scholar 

  30. Taylan, O., Bafail, A.O., Abdulaal, R.M.S., Kabli, M.R.: Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Appl. Soft Comput. 17, 105–116 (2014)

    Article  Google Scholar 

  31. Wei, G.W.: Picture fuzzy aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 33(2), 713–724 (2017)

    Article  MATH  Google Scholar 

  32. Wei, G.W.: Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag. 17(4), 491–502 (2016)

    Article  MathSciNet  Google Scholar 

  33. Wang, J.Q., Yang, Y., Li, L.: Multi-criteria decision-making method based on single-valued neutrosophic linguistic Maclaurin symmetric mean operators. Neural Comput. Appl. 30(5), 1529–1547 (2018)

    Article  Google Scholar 

  34. Wang, L., Zhang, H.Y., Wang, J.Q., Li, L.: Picture fuzzy normalized projection-based VIKOR method for the risk evaluation of construction project. Appl. Soft Comput. 64, 216–226 (2018)

    Article  Google Scholar 

  35. Wu, Y.N., Xua, C.B., Ke, Y.M., Chen, K.F., Sun, X.K.: An intuitionistic fuzzy multi-criteria framework for large-scale rooftop PV project portfolio selection: case study in Zhejiang, China. Energy 143, 295–309 (2018)

    Article  Google Scholar 

  36. Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187 (2007)

    Article  Google Scholar 

  37. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen Syst 35, 417–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, Z.S., Yager, R.R.: Intuitionistic fuzzy Bonferroni means. IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.) 41(2), 568–578 (2011)

    Article  Google Scholar 

  39. Yager, R.R.: The power average operator. IEEE Trans. Syst. Man Cybernet. Part A Syst. Hum. 31(6), 724–731 (2001)

    Article  Google Scholar 

  40. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  41. Zafar, F., Akram, M.: A novel decision-making method based on rough fuzzy information. Int. J. Fuzzy Syst. 20(3), 1000–1014 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos. 71771140, 71471172), the Special Funds of Taishan Scholars Project of Shandong Province (No. ts201511045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peide Liu.

Appendices

Appendix 1

Suppose \(T = \left\langle {s,i,d} \right\rangle\), \(T_{A} = \left\langle {s_{A} ,i_{A} ,d_{A} } \right\rangle\), \(T_{B} = \left\langle {s_{B} ,i_{B} ,d_{B} } \right\rangle\)are any three T-SFNs, and \(\lambda ,\lambda_{1,} \lambda_{2} > 0\), Then they have the following operational properties.

$$({\text{i}})\;T_{A} \oplus T_{B} = T_{B} \oplus T_{A}$$
(8)
$$({\text{ii}})\;T_{A} \otimes T_{B} = T_{B} \otimes T_{A}$$
(9)
$$({\text{iii}})\;\lambda \left( {T_{A} \oplus T_{B} } \right) = \lambda T_{A} \oplus \lambda T_{B}$$
(10)
$$({\text{iv}})\;\lambda_{1} T \oplus \lambda_{2} T = \left( {\lambda_{1} \oplus \lambda_{2} } \right)T$$
(11)
$$({\text{v}})\;\left( {T_{A} \otimes T_{B} } \right)^{\lambda } = T_{A}^{\lambda } \otimes T_{B}^{\lambda }$$
(12)
$$({\text{vi}})\;T^{{\lambda_{1} }} \otimes T^{{\lambda_{2} }} = T^{{\left( {\lambda_{1} + \lambda_{2} } \right)}}$$
(13)

Proof

  1. 1.
    $$\begin{array}{*{20}l} {T_{A} \oplus T_{B} = \left\langle {\left( {1 - \left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{1/n} ,i_{A} i_{B} ,d_{A} d_{B} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - s_{B}^{n} } \right)\left( {1{ - }s_{A}^{n} } \right)} \right)^{1/n} ,i_{B} i_{A} ,d_{B} d_{A} } \right\rangle = T_{B} \oplus T_{A} } \hfill \\ \end{array}$$
  2. 2.
    $$\begin{array}{*{20}l} {T_{A} \otimes T_{B} = \left\langle {s_{A} s_{B} ,\left( {1 - \left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{1/n} ,\left( {1 - \left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s_{B} s_{A} ,\left( {1 - \left( {1 - i_{B}^{n} } \right)\left( {1{ - }i_{A}^{n} } \right)} \right)^{1/n} ,\left( {1 - \left( {1 - d_{B}^{n} } \right)\left( {1{ - }d_{A}^{n} } \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = T_{B} \otimes T_{A} .} \hfill \\ \end{array}$$
  3. 3.
    $$\begin{array}{*{20}l} {\lambda \left( {T_{A} \oplus T_{B} } \right) = \lambda \left\langle {\left( {1 - \left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{1/n} ,i_{A} i_{B} ,d_{A} d_{B} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{1/n} } \right)^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{A}^{\lambda } ,d_{A}^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {1 - \left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {\left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ \end{array}$$

Because \(\lambda T_{A} = \left\langle {\left( {1 - \left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{A}^{\lambda } ,d_{A}^{\lambda } } \right\rangle ,\)\(\lambda T_{B} = \left\langle {\left( {1 - \left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{B}^{\lambda } ,d_{B}^{\lambda } } \right\rangle\)

$$\begin{array}{*{20}l} {\lambda T_{A} \oplus \lambda T_{B} = \left\langle {\left( {1 - \left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{A}^{\lambda } ,d_{A}^{\lambda } } \right\rangle \oplus \left\langle {\left( {1 - \left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{B}^{\lambda } ,d_{B}^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {1 - \left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)} \right)} \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {\left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)\left( {\left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)} \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {\left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ \end{array}$$

So, \(\lambda \left( {T_{A} \oplus T_{B} } \right) = \lambda T_{A} \oplus \lambda T_{B}\).

  1. 4.
    $$\begin{array}{*{20}l} {\lambda_{1} T \oplus \lambda_{2} T{ = }\left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} ,i^{{\lambda_{1} }} ,d^{{\lambda_{1} }} } \right\rangle \oplus \left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} ,i^{{\lambda_{2} }} ,d^{{\lambda_{2} }} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} ,i^{{\lambda_{1} }} i^{{\lambda_{2} }} ,d^{{\lambda_{1} }} d^{{\lambda_{2} }} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} }} } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{1/n} ,i^{{\lambda_{1} }} i^{{\lambda_{2} }} ,d^{{\lambda_{1} }} d^{{\lambda_{2} }} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} }} \left( {1 - s^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} ,i^{{\lambda_{1} }} i^{{\lambda_{2} }} ,d^{{\lambda_{1} }} d^{{\lambda_{2} }} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} { + }\lambda_{2} }} } \right)^{1/n} ,i^{{\lambda_{1} { + }\lambda_{2} }} ,d^{{\lambda_{1} { + }\lambda_{2} }} } \right\rangle } \hfill \\ \end{array}$$

and \(\left( {\lambda_{1} \oplus \lambda_{2} } \right)T = \left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} { + }\lambda_{2} }} } \right)^{1/n} ,i^{{\lambda_{1} { + }\lambda_{2} }} ,d^{{\lambda_{1} { + }\lambda_{2} }} } \right\rangle\)So \(\lambda_{1} T \oplus \lambda_{2} T = \left( {\lambda_{1} \oplus \lambda_{2} } \right)T\)

  1. 5.

    \(\begin{array}{*{20}l} {\left( {T_{A} \otimes T_{B} } \right)^{\lambda } { = }\left\langle {s_{A} s_{B} ,\left( {1 - \left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{1/n} ,\left( {1 - \left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{1/n} } \right\rangle^{\lambda } } \hfill \\ { = \left\langle {\left( {s_{A} s_{B} } \right)^{\lambda } ,\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{1/n} } \right)^{n} } \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{1/n} } \right)^{n} } \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {s_{A} s_{B} } \right)^{\lambda } ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)} \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {s_{A} s_{B} } \right)^{\lambda } ,\left( {1 - \left( {\left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {\left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ \end{array}\)

and

$$\begin{array}{*{20}l} {T_{A}^{\lambda } \otimes T_{B}^{\lambda } = \left\langle {s_{A}^{\lambda } ,\left( {1 - \left( {1 - i_{A}^{n} } \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {1 - d_{A}^{n} } \right)^{\lambda } } \right)^{1/n} } \right\rangle \otimes \left\langle {s_{B}^{\lambda } ,\left( {1 - \left( {1 - i_{B}^{n} } \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {1 - d_{B}^{n} } \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle \begin{aligned} s_{A}^{\lambda } s_{B}^{\lambda } ,\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - i_{A}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - i_{B}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - d_{A}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - d_{B}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ { = \left\langle {s_{A}^{\lambda } s_{B}^{\lambda } ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - i_{A}^{n} } \right)^{\lambda } } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - i_{B}^{n} } \right)^{\lambda } } \right)} \right)} \right)^{1/n} ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - d_{A}^{n} } \right)^{\lambda } } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - d_{B}^{n} } \right)^{\lambda } } \right)} \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s_{A}^{\lambda } s_{B}^{\lambda } ,\left( {1 - \left( {\left( {1 - i_{A}^{n} } \right)^{\lambda } } \right)\left( {\left( {1 - i_{B}^{n} } \right)^{\lambda } } \right)} \right)^{1/n} ,\left( {1 - \left( {\left( {1 - d_{A}^{n} } \right)^{\lambda } } \right)\left( {\left( {1 - d_{B}^{n} } \right)^{\lambda } } \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {s_{A} s_{B} } \right)^{\lambda } ,\left( {1 - \left( {\left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {\left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ \end{array}$$

So \(\left( {T_{A} \otimes T_{B} } \right)^{\lambda } = T_{A}^{\lambda } \otimes T_{B}^{\lambda }\)

  1. 6.
    $$\begin{array}{*{20}l} {T^{{\lambda_{1} }} \otimes T^{{\lambda_{2} }} = \left\langle {s^{{\lambda_{1} }} ,\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} ,\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} } \right\rangle \otimes \left\langle {s^{{\lambda_{2} }} ,\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} ,\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle \begin{aligned} s^{{\lambda_{1} }} s^{{\lambda_{2} }} ,\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ { = \left\langle {s^{{\lambda_{1} }} s^{{\lambda_{2} }} ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{1} }} } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{1/n} ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{1} }} } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s^{{\lambda_{1} }} s^{{\lambda_{2} }} ,\left( {1 - \left( {\left( {1 - i^{n} } \right)^{{\lambda_{1} }} } \right)\left( {\left( {1 - i^{n} } \right)^{{\lambda_{2} }} } \right)} \right)^{1/n} ,\left( {1 - \left( {\left( {1 - d^{n} } \right)^{{\lambda_{1} }} } \right)\left( {\left( {1 - d^{n} } \right)^{{\lambda_{2} }} } \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} ,\left( {1 - \left( {1 - i^{n} } \right)^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} } \right)^{1/n} ,\left( {1 - \left( {1 - d^{n} } \right)^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} } \right)^{1/n} } \right\rangle } \hfill \\ \end{array}$$

and \(T^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} = \left\langle {s,i,d} \right\rangle^{{\left( {\lambda_{1} + \lambda_{2} } \right)}}\)\(= \left\langle {s^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} ,\left( {1 - \left( {1 - i^{n} } \right)^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} } \right)^{1/n} ,\left( {1 - \left( {1 - d^{n} } \right)^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} } \right)^{1/n} } \right\rangle\)

So \(T^{{\lambda_{1} }} \otimes T^{{\lambda_{2} }} = T^{{\left( {\lambda_{1} + \lambda_{2} } \right)}}\).□

Appendix 2

Theorem 1

Suppose\(T_{1} ,T_{2} , \ldots\)and\(T_{k}\)are T-SFNs, where\(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\((m = 1,2, \ldots ,k)\). The synthesized result of the T-SFGMSM operator of the T-SFNs\(T_{1} ,T_{2} , \ldots\)and\(T_{k}\)is still a T-SFN, shown as follows:

$$\begin{aligned} & {\hbox{T-SFGMSM}^{{\left( {r,\lambda_{1},\lambda_{2} ,\ldots ,\lambda_{r} } \right)}} \left( {T_{1} ,T_{2}, \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \left({\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1- \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ & {\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle } \hfill \\ \end{aligned}$$
(16)

Proof

According to the operational rules of T-SFNs, we can obtain

$$T_{{m_{j} }}^{{\lambda_{j} }} = \left\langle {s_{{m_{j} }}^{{\lambda_{j} }} ,\left( {1 - \left( {1 - i_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } \right)^{1/n} ,\left( {1 - \left( {1 - d_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } \right)^{1/n} } \right\rangle$$

and

$$\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} = \left\langle {\prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} }} } ,\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - i_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} ,\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - d_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} } \right\rangle .$$

Then, we can calculate

$$\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right) = \left\langle \begin{aligned} \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{1/n} , \hfill \\ \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} ,} \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \hfill \\ \end{aligned} \right\rangle$$

and

$$\begin{array}{*{20}l} {\frac{{\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right)}}{{\left( \begin{aligned} k \hfill \\ r \hfill \\ \end{aligned} \right)}} = \left\langle {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} ,} \right.} \hfill \\ {\left. {\left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} ,\left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right\rangle } \hfill \\ \end{array}$$

So the comprehensive result of the T-SFGMSM operator is

$$\left( {\frac{{\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right)}}{{\left( \begin{aligned} k \hfill \\ r \hfill \\ \end{aligned} \right)}}} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} = \left\langle {\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$

That proves Eq. (16) is right.□

Appendix 3

(1) Idempotency: If \(T_{1} ,T_{2} , \ldots ,\) and \(T_{k}\) are T-SFNs meeting the condition with\(T_{m} = \left\{ {s_{m} ,i_{m} ,d_{m} } \right\} = T = \left\{ {s,i,d} \right\}\)\((m = 1,2, \ldots ,k)\). Then, \(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = T\).

Proof.

According to the above Theorem 1, we can obtain that \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle = T = \left\langle {s,i,d} \right\rangle\) for any \(m = 1,2, \ldots ,k\).

$$\begin{array}{*{20}l} {\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ {\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,} \hfill \\ { \left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - s^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) \times n}} } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ {\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ { = \left\langle {\left( {\left( {1 - \left( {1 - s^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) \times n}} } \right)} \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ {\left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left. {\left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s,} \right.i,\left. d \right\rangle } \hfill \\ \end{array}$$

Appendix 4

(2) Monotonicity: If \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) and \(\hat{T}_{m} = \left\langle {\hat{s}_{m} ,\hat{i}_{m} ,\hat{d}_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) are any two sets of T-SFNs. They accord the prerequisite “\(\hat{s}_{m} \le s_{m}\), \(\hat{i}_{m} \le i_{m}\) and \(\hat{d}_{m} \ge d_{m}\),” then\(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right).\)

Proof

Suppose that \(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) = \hat{T} = \left\langle {\hat{s},\hat{i},\hat{d}} \right\rangle\) and \(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = T = \left\langle {s,i,d} \right\rangle\), then

$$\hat{s} = \left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {\hat{s}_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,$$
$$s = \left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ;$$
$$\hat{i} = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{i}_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$i = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ;$$
$$\hat{d} = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{d}_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$d = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} .$$

In order to prove this property, we need to compute their score function values \(S(\hat{T})\) and \(S(T)\), and their accuracy function values \(A(\hat{T})\) and \(A(T)\) to compare their synthesized results, i.e., \(\hat{T} \le T\). Firstly, based on the conditions \(\hat{s}_{m} \le s_{m}\), \(\hat{i}_{m} \le i_{m}\) and \(\hat{d}_{m} \ge d_{m}\), we can get the compared results of their MD, AMD and NMD.

  1. 1.

    For the membership degree

Based on \(\hat{s}_{m} \le s_{m}\), we can get

$$\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {\hat{s}_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} \le \left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}}$$

That is \(\hat{s}_{m} \le s_{m}\)

  1. 2.

    For the abstinence degree

Based on \(\hat{i}_{m} \le i_{m}\) , we can obtain

$$\begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{i}_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \le \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned}$$

That is \(\hat{i}_{m} \le i_{m}\)

  1. 3.

    For the non-membership degree

Based on \(\hat{d}_{m} \ge d_{m}\) , we can obtain

$$\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{d}_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$
$$\ge \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$

That is \(\hat{d}_{m} \ge d_{m}\)Thus, it can be obtained that \(S(\hat{T}) = \hat{s}^{n} - \hat{d}^{n} \le S(T) = s^{n} - d^{n}\). Next, we explore two cases.

  1. 1.

    If \(S(\hat{T}) < S(T)\), then \(\hat{T} < T\) according to Definition 4.

  2. 2.

    If \(S(\hat{T}) = S(T)\), then \(\hat{s} = s\), \(\hat{d} = d\) Because \(\hat{i} \le i\), so \(A(\hat{T}) = \hat{s}^{n} + \hat{i}^{n} { + }\hat{d}^{n} = A(T) = s^{n} + i^{n} { + }d^{n}\), which testifies \(\hat{T} \le T\).

In conclusion, the synthesized result \(\hat{T} \le T\), which explains\(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right)\)

Appendix 5

(3) Boundedness: Suppose \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) is any a set of T-SFNs, \(T^{ - } = \mathop { \hbox{min} }\limits_{m} T_{m}\) and \(T^{ + } = \mathop { \hbox{max} }\limits_{m} T_{m}\), then \(T^{ - } \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \cdots ,T_{k} } \right) \le T^{ + }\).

Proof

Owing to \(T_{m} \ge T^{ - } = \mathop { \hbox{min} }\limits_{m} T_{m}\), based on the Monotonicity and Idempotency of the novel \(\hbox{T-SFGMSM}\) operator, the following results can be obtained:

$$\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) \ge \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T^{ - } ,T^{ - } , \ldots ,T^{ - } } \right) = T^{ - }$$

comparably, the corresponding result for \(T^{ + } = \mathop { \hbox{max} }\limits_{m} T_{m}\) can be obtained:

$$\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T^{ + } ,T^{ + } , \ldots ,T^{ + } } \right) = T^{ + }$$

Therefore, \(T^{ - } \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) \le T^{ + }\).□

Appendix 6

Theorem 3

Let\(T_{1} ,T_{2} , \cdots\)and\(T_{k}\)be T-SFNs, where\(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(m = \left( {1,2, \ldots ,k} \right)\), and let the weight of input argument\(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(m = \left( {1,2, \ldots ,k} \right)\)be\(\omega_{m}\), where\(\omega_{m} \in \left[ {0,1} \right]\)and\(\sum\nolimits_{m = 1}^{k} {\omega_{m} } = 1\). Then, the synthesized result of the\(\hbox{T-SFGMSM}\)operator of the T-SFNs\(T_{1} ,T_{2} , \ldots\)and\(T_{k}\)is still a T-SFN, shown as follows:

$$\begin{array}{*{20}l} {{\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = } \hfill \\ {\left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,} \right.} \hfill \\ {\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle \left( {1 \le r < k} \right)} \hfill \\ {\left\langle {\left( {\prod\limits_{m = 1}^{r} {s_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - i_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - d_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle \left( {r = k} \right)} \hfill \\ \end{array}$$
(18)

Proof

Obtained by the operational laws of T-SFNs defined in Definition 5, Theorem 3 can be easily proved.

  1. 1.

    For \(1 \le r < k\), we can have \(\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} = \left\langle {\prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} }} } ,\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - i_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} ,\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - d_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} } \right\rangle\)

Obtained by the operational laws of T-SFNs, we can derive the below equations:

$$\left( {1 - \sum\limits_{j= 1}^{r} {\omega_{{m_{j} }} } } \right)\left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right) = \left\langle \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} } \right)^{1/n} , \hfill \\ \left( {\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - i_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} ,\left( {\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - d_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} \hfill \\ \end{aligned} \right\rangle$$

and

$$\begin{array}{*{20}l} {\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)\left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right) = } \hfill \\ {\left\langle {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} } } \right)^{1/n} , \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} ,} \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} } } \right\rangle } \hfill \\ \end{array}$$

then

$$\begin{array}{*{20}l} {\frac{{\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)\left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right)}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}} = } \hfill \\ {\left\langle \begin{aligned} \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} , \hfill \\ \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} ,} \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } \hfill \\ \end{aligned} \right\rangle } \hfill \\ {\left( {\frac{{\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {1 - \sum\nolimits_{j= 1}^{r} {\omega_{{m_{j} }} } } \right)\left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right)}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} = } \hfill \\ {\left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ {\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j= 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j= 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ \end{array}$$

So formula (18) is right when \(1 \le r < n\).

  1. 2.

    For \(r = k\), we have known that

    $$\mathop \otimes \limits_{m = 1}^{r} T_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} = \left\langle {\prod\limits_{m = 1}^{r} {s_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } ,\left( {1 - \prod\limits_{m = 1}^{r} {(1 - i_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{1/n} ,\left( {1 - \prod\limits_{m = 1}^{r} {(1 - d_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{1/n} } \right\rangle$$

Based on the proof of the first case when \(1 \le r < n\), we can derive the below equations:

$$\begin{array}{*{20}l} {\left( {\mathop \otimes \limits_{m = 1}^{r} T_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} = } \hfill \\ {\left\langle \begin{aligned}& \left( {\prod\limits_{m = 1}^{r} {s_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\& \left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - i_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - d_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ \end{array}$$

Appendix 7

(1) Idempotency: If \(T_{1} ,T_{2} , \ldots ,\) and \(T_{k}\) are T-SFNs and meet \(T_{m} = \left\langle {s_{m} , i_{m} ,d_{m} } \right\rangle = T = \left\langle {s, i,d} \right\rangle\)\((m = 1,2, \ldots ,k)\). Then, \({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = T\).

Proof

According to the above Theorem 3, we can obtain that

  1. 1.

    For \(1 \le r < k\), we can get

$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - s^{{q \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \left( {1 - s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} }} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \left( {1 - s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}} \left( {\left( \begin{array}{*{20}l} k\\ r \\ \end{array}\right) -\sum\limits_{{1 \le m_{1} \cdots < m_{r} \le k}}^{k} {\left( {\sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} }\right)}}} \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \left( {1 - s^{{q \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{m_{j} = 1}}^{k} {\left( {\left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)\omega_{{m_{j} }} } \right)} } \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{m_{j} = 1}}^{k} {\left( {\left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)\omega_{{m_{j} }} } \right)} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{m_{j} = 1}}^{k} {\left( {\left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)\omega_{{m_{j} }} } \right)} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \left( {1 - s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)} \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)} \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle \begin{aligned} \left( {\left( {1 - \left( {1 - s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right) } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle \begin{aligned} \left( {\left( {s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {(1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {u ,v} \right\rangle$$
  1. 2.

    For \(r = k\), we can get

$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) =$$
$$\left\langle \begin{aligned} \left( {\prod\limits_{m = 1}^{r} {s^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - i^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - d^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$${ = }\left\langle {\left( {s^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,\left( {1 - \left( {(1 - i^{n} )^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$
$$= \left\langle \begin{aligned} \left( {s^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {(1 - i^{n} )^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle \begin{aligned} \left( {s^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) + \frac{{\sum\nolimits_{m = 1}^{r} {\left( {1 - k\omega_{m} } \right)} }}{k - 1}}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {(1 - i^{n} )^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) + \frac{{\sum\nolimits_{m = 1}^{r} {\left( {1 - k\omega_{m} } \right)} }}{k - 1}}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) + \frac{{\sum\nolimits_{m = 1}^{r} {\left( {1 - k\omega_{m} } \right)} }}{k - 1}}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$

Because \(r = k\) and \(\sum\nolimits_{m = 1}^{k} {\omega_{m} } = 1\), we have \(\sum\nolimits_{m = 1}^{r} {\left( {1 - k\omega_{m} } \right)} = k - k\sum\nolimits_{m = 1}^{k} {\omega_{m} } = 0\) and the upper equality becomes the following form:

$$\begin{aligned} \left\langle {\left( {s^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,\left( {1 - \left( {(1 - i^{n} )^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle \hfill \\ = \left\langle {s,\left( {1 - (1 - i^{n} )} \right)^{1/n} ,\left( {1 - (1 - d^{n} )} \right)^{1/n} } \right\rangle = \left\langle {s,i,d} \right\rangle \hfill \\ \end{aligned}$$

Therefore, the \({\hbox{T-SFWGMSM}}\) operator has the Idempotency property.□

Appendix 8

(2) Monotonicity: If \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) and \(\hat{T}_{m} = \left\langle {\hat{s}_{m} ,\hat{i}_{m} ,\hat{d}_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) are any two sets about T-SFNs. They accord the prerequisite \(\hat{s}_{m} \le s_{m}\), \(\hat{i}_{m} \le i_{m}\) and \(\hat{d}_{m} \ge d_{m}\), then \({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) \le {\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right).\)

Proof

Similar to the monotonicity property of the \({\hbox{T-SFWGMSM}}\) operator, the following formulas can be assumed:\({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) = \hat{T} = \left\langle {\hat{s},\hat{i},\hat{d}} \right\rangle\) and \({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = T = \left\langle {s,i,d} \right\rangle\). Since formula (18) is divided into two cases, we discuss each case separately.

  1. 1.

    For \(1 \le r < k\), we can get

$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$
$$\hat{s} = \left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {\hat{s}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,$$
$$s = \left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,$$
$$\hat{i} = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{i}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$i = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$\hat{d} = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{d}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$d = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} .$$

Because \(\hat{s}_{m} \le s_{m}\), \(\hat{i}_{m} \le i_{m}\) and \(\hat{d}_{m} \ge d_{m}\), it is easy to obtain the following inequalities:

$$\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {\hat{s}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} \le \left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}}$$
$$\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{i}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \le \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$

and

$$\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{d}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$
$$\ge \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$

i.e., \(\hat{s} \le s\) and \(\hat{i} \le i\).Thus, it can be obtained that \(S(\hat{T}) = \hat{s}^{n} - \hat{d}^{n} \le S(T) = s^{n} - d^{n}\). Next, we discuss two cases.

  • (a) If \(S(\hat{T}) < S(T)\), then \(\hat{T} < T\) according to Definition 4.

  • (b) If \(S(\hat{T}) = S(T)\), then \(\hat{s} = s\), \(\hat{d} = d\) Because \(\hat{i} \le i\), so \(A(\hat{T}) = \hat{s}^{n} + \hat{i}^{n} { + }\hat{d}^{n} = A(T) = s^{n} + i^{n} { + }d^{n}\), which testifies \(\hat{T} < T\).

To sum up, the synthesized result is \(\hat{T} < T\).

  1. 2.

    For \(r = k\), its proof process is similar to the one of the first case where \(1 \le r < k\), so we omit it here.

According to (i) and (ii), we can get \(\hat{T} \le T\), which explains \({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) \le {\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right).\)

Appendix 9

(3) Boundedness: Let \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) be any a set of T-SFNs, \(T^{ - } = \mathop { \hbox{min} }\limits_{m} T_{m}\) and\(T^{ + } = \mathop { \hbox{max} }\limits_{m} T_{m}\), then \(T^{ - } \le {\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) \le T^{ + }\).

Because the certification process is same with the one of corresponding Boundedness property of the \(\hbox{T-SFGMSM}\) operator, we omit it here.

Similarly, we also observe many particular instances about the T-SFWGMSM operator with different parameters. Here, we just introduce a particular instance of this operator.

When \(\omega_{m} = \frac{1}{k}\)\(\left( {m = 1,2, \ldots ,k} \right)\), the proposed \({\hbox{T-SFWGMSM}}\) operator is simplified into the \(\hbox{T-SFGMSM}\) operator.

Proof

According to Eq. (18), we should take two cases into account.

  1. 1.

    For \(1 \le r < k\), we know\(\omega_{m} = \frac{1}{k}\)\(\left( {m = 1,2, \ldots ,k} \right)\), so we can get

$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\frac{1}{k}} }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\frac{1}{k}} }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\frac{1}{k}} }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \frac{r}{k}}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \frac{r}{k}}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \frac{r}{k}}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{1}{{\left( \begin{array}{l} k \\ r \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\left( \begin{array}{l} k \\ r \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\left( \begin{array}{l} k \\ r \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right).$$
  1. 2.

    For \(r = k\), based on\(\omega_{m} = \frac{1}{k}\)\(\left( {m = 1,2, \ldots ,k} \right)\), we have

$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) =$$
$$\left\langle \begin{aligned} &\left( {\prod\limits_{m = 1}^{r} {s_{m}^{{\lambda_{m} + \frac{{1 - k \times \frac{1}{k}}}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\& \left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - i_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k \times \frac{1}{k}}}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - d_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k \times \frac{1}{k}}}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle \begin{aligned}& \left( {\prod\limits_{m = 1}^{k} {s_{m}^{{\lambda_{m} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} , \hfill \\& \left( {1 - \left( {\prod\limits_{m = 1}^{k} {(1 - i_{m}^{n} )^{{\lambda_{m} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{k} {(1 - d_{m}^{n} )^{{\lambda_{m} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$

By Theorem 1, we can see

$$\hbox{T-SFGMSM}^{{\left( {k, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{k} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{K} } \right) =$$
$$\left\langle \begin{aligned} \left( {\prod\limits_{j = 1}^{k} {s_{{m_{j} }}^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} , \hfill \\ \left( {1 - \left( {\prod\limits_{j = 1}^{k} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{j = 1}^{k} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$

Therefore, when the weights of input arguments are assigned to equal values, the proposed T-SFWGMSM operator is simplified as the T-SFGMSM operator.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Zhu, B. & Wang, P. A Multi-attribute Decision-Making Approach Based on Spherical Fuzzy Sets for Yunnan Baiyao’s R&D Project Selection Problem. Int. J. Fuzzy Syst. 21, 2168–2191 (2019). https://doi.org/10.1007/s40815-019-00687-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00687-x

Keywords

Navigation