Appendix 1
Suppose \(T = \left\langle {s,i,d} \right\rangle\), \(T_{A} = \left\langle {s_{A} ,i_{A} ,d_{A} } \right\rangle\), \(T_{B} = \left\langle {s_{B} ,i_{B} ,d_{B} } \right\rangle\)are any three T-SFNs, and \(\lambda ,\lambda_{1,} \lambda_{2} > 0\), Then they have the following operational properties.
$$({\text{i}})\;T_{A} \oplus T_{B} = T_{B} \oplus T_{A}$$
(8)
$$({\text{ii}})\;T_{A} \otimes T_{B} = T_{B} \otimes T_{A}$$
(9)
$$({\text{iii}})\;\lambda \left( {T_{A} \oplus T_{B} } \right) = \lambda T_{A} \oplus \lambda T_{B}$$
(10)
$$({\text{iv}})\;\lambda_{1} T \oplus \lambda_{2} T = \left( {\lambda_{1} \oplus \lambda_{2} } \right)T$$
(11)
$$({\text{v}})\;\left( {T_{A} \otimes T_{B} } \right)^{\lambda } = T_{A}^{\lambda } \otimes T_{B}^{\lambda }$$
(12)
$$({\text{vi}})\;T^{{\lambda_{1} }} \otimes T^{{\lambda_{2} }} = T^{{\left( {\lambda_{1} + \lambda_{2} } \right)}}$$
(13)
Proof
-
1.
$$\begin{array}{*{20}l} {T_{A} \oplus T_{B} = \left\langle {\left( {1 - \left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{1/n} ,i_{A} i_{B} ,d_{A} d_{B} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - s_{B}^{n} } \right)\left( {1{ - }s_{A}^{n} } \right)} \right)^{1/n} ,i_{B} i_{A} ,d_{B} d_{A} } \right\rangle = T_{B} \oplus T_{A} } \hfill \\ \end{array}$$
-
2.
$$\begin{array}{*{20}l} {T_{A} \otimes T_{B} = \left\langle {s_{A} s_{B} ,\left( {1 - \left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{1/n} ,\left( {1 - \left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s_{B} s_{A} ,\left( {1 - \left( {1 - i_{B}^{n} } \right)\left( {1{ - }i_{A}^{n} } \right)} \right)^{1/n} ,\left( {1 - \left( {1 - d_{B}^{n} } \right)\left( {1{ - }d_{A}^{n} } \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = T_{B} \otimes T_{A} .} \hfill \\ \end{array}$$
-
3.
$$\begin{array}{*{20}l} {\lambda \left( {T_{A} \oplus T_{B} } \right) = \lambda \left\langle {\left( {1 - \left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{1/n} ,i_{A} i_{B} ,d_{A} d_{B} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{1/n} } \right)^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{A}^{\lambda } ,d_{A}^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {1 - \left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {\left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ \end{array}$$
Because \(\lambda T_{A} = \left\langle {\left( {1 - \left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{A}^{\lambda } ,d_{A}^{\lambda } } \right\rangle ,\)\(\lambda T_{B} = \left\langle {\left( {1 - \left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{B}^{\lambda } ,d_{B}^{\lambda } } \right\rangle\)
$$\begin{array}{*{20}l} {\lambda T_{A} \oplus \lambda T_{B} = \left\langle {\left( {1 - \left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{A}^{\lambda } ,d_{A}^{\lambda } } \right\rangle \oplus \left\langle {\left( {1 - \left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)^{1/n} ,i_{B}^{\lambda } ,d_{B}^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {1 - \left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)} \right)} \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {\left( {1 - s_{A}^{n} } \right)^{\lambda } } \right)\left( {\left( {1 - s_{B}^{n} } \right)^{\lambda } } \right)} \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {\left( {1 - s_{A}^{n} } \right)\left( {1{ - }s_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {i_{A} i_{B} } \right)^{\lambda } ,\left( {d_{A} d_{B} } \right)^{\lambda } } \right\rangle } \hfill \\ \end{array}$$
So, \(\lambda \left( {T_{A} \oplus T_{B} } \right) = \lambda T_{A} \oplus \lambda T_{B}\).
-
4.
$$\begin{array}{*{20}l} {\lambda_{1} T \oplus \lambda_{2} T{ = }\left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} ,i^{{\lambda_{1} }} ,d^{{\lambda_{1} }} } \right\rangle \oplus \left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} ,i^{{\lambda_{2} }} ,d^{{\lambda_{2} }} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} ,i^{{\lambda_{1} }} i^{{\lambda_{2} }} ,d^{{\lambda_{1} }} d^{{\lambda_{2} }} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - \left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} }} } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{1/n} ,i^{{\lambda_{1} }} i^{{\lambda_{2} }} ,d^{{\lambda_{1} }} d^{{\lambda_{2} }} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} }} \left( {1 - s^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} ,i^{{\lambda_{1} }} i^{{\lambda_{2} }} ,d^{{\lambda_{1} }} d^{{\lambda_{2} }} } \right\rangle } \hfill \\ { = \left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} { + }\lambda_{2} }} } \right)^{1/n} ,i^{{\lambda_{1} { + }\lambda_{2} }} ,d^{{\lambda_{1} { + }\lambda_{2} }} } \right\rangle } \hfill \\ \end{array}$$
and \(\left( {\lambda_{1} \oplus \lambda_{2} } \right)T = \left\langle {\left( {1 - \left( {1 - s^{n} } \right)^{{\lambda_{1} { + }\lambda_{2} }} } \right)^{1/n} ,i^{{\lambda_{1} { + }\lambda_{2} }} ,d^{{\lambda_{1} { + }\lambda_{2} }} } \right\rangle\)So \(\lambda_{1} T \oplus \lambda_{2} T = \left( {\lambda_{1} \oplus \lambda_{2} } \right)T\)
-
5.
\(\begin{array}{*{20}l} {\left( {T_{A} \otimes T_{B} } \right)^{\lambda } { = }\left\langle {s_{A} s_{B} ,\left( {1 - \left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{1/n} ,\left( {1 - \left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{1/n} } \right\rangle^{\lambda } } \hfill \\ { = \left\langle {\left( {s_{A} s_{B} } \right)^{\lambda } ,\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{1/n} } \right)^{n} } \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{1/n} } \right)^{n} } \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {s_{A} s_{B} } \right)^{\lambda } ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)} \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {s_{A} s_{B} } \right)^{\lambda } ,\left( {1 - \left( {\left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {\left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ \end{array}\)
and
$$\begin{array}{*{20}l} {T_{A}^{\lambda } \otimes T_{B}^{\lambda } = \left\langle {s_{A}^{\lambda } ,\left( {1 - \left( {1 - i_{A}^{n} } \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {1 - d_{A}^{n} } \right)^{\lambda } } \right)^{1/n} } \right\rangle \otimes \left\langle {s_{B}^{\lambda } ,\left( {1 - \left( {1 - i_{B}^{n} } \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {1 - d_{B}^{n} } \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle \begin{aligned} s_{A}^{\lambda } s_{B}^{\lambda } ,\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - i_{A}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - i_{B}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - d_{A}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - d_{B}^{n} } \right)^{\lambda } } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ { = \left\langle {s_{A}^{\lambda } s_{B}^{\lambda } ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - i_{A}^{n} } \right)^{\lambda } } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - i_{B}^{n} } \right)^{\lambda } } \right)} \right)} \right)^{1/n} ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - d_{A}^{n} } \right)^{\lambda } } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - d_{B}^{n} } \right)^{\lambda } } \right)} \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s_{A}^{\lambda } s_{B}^{\lambda } ,\left( {1 - \left( {\left( {1 - i_{A}^{n} } \right)^{\lambda } } \right)\left( {\left( {1 - i_{B}^{n} } \right)^{\lambda } } \right)} \right)^{1/n} ,\left( {1 - \left( {\left( {1 - d_{A}^{n} } \right)^{\lambda } } \right)\left( {\left( {1 - d_{B}^{n} } \right)^{\lambda } } \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {s_{A} s_{B} } \right)^{\lambda } ,\left( {1 - \left( {\left( {1 - i_{A}^{n} } \right)\left( {1{ - }i_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} ,\left( {1 - \left( {\left( {1 - d_{A}^{n} } \right)\left( {1{ - }d_{B}^{n} } \right)} \right)^{\lambda } } \right)^{1/n} } \right\rangle } \hfill \\ \end{array}$$
So \(\left( {T_{A} \otimes T_{B} } \right)^{\lambda } = T_{A}^{\lambda } \otimes T_{B}^{\lambda }\)
-
6.
$$\begin{array}{*{20}l} {T^{{\lambda_{1} }} \otimes T^{{\lambda_{2} }} = \left\langle {s^{{\lambda_{1} }} ,\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} ,\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} } \right\rangle \otimes \left\langle {s^{{\lambda_{2} }} ,\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} ,\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle \begin{aligned} s^{{\lambda_{1} }} s^{{\lambda_{2} }} ,\left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{1} }} } \right)^{1/n} } \right)^{n} } \right)\left( {1{ - }\left( {\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{2} }} } \right)^{1/n} } \right)^{n} } \right)} \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ { = \left\langle {s^{{\lambda_{1} }} s^{{\lambda_{2} }} ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{1} }} } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - i^{n} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{1/n} ,\left( {1 - \left( {1 - \left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{1} }} } \right)} \right)\left( {1{ - }\left( {1 - \left( {1 - d^{n} } \right)^{{\lambda_{2} }} } \right)} \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s^{{\lambda_{1} }} s^{{\lambda_{2} }} ,\left( {1 - \left( {\left( {1 - i^{n} } \right)^{{\lambda_{1} }} } \right)\left( {\left( {1 - i^{n} } \right)^{{\lambda_{2} }} } \right)} \right)^{1/n} ,\left( {1 - \left( {\left( {1 - d^{n} } \right)^{{\lambda_{1} }} } \right)\left( {\left( {1 - d^{n} } \right)^{{\lambda_{2} }} } \right)} \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} ,\left( {1 - \left( {1 - i^{n} } \right)^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} } \right)^{1/n} ,\left( {1 - \left( {1 - d^{n} } \right)^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} } \right)^{1/n} } \right\rangle } \hfill \\ \end{array}$$
and \(T^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} = \left\langle {s,i,d} \right\rangle^{{\left( {\lambda_{1} + \lambda_{2} } \right)}}\)\(= \left\langle {s^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} ,\left( {1 - \left( {1 - i^{n} } \right)^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} } \right)^{1/n} ,\left( {1 - \left( {1 - d^{n} } \right)^{{\left( {\lambda_{1} + \lambda_{2} } \right)}} } \right)^{1/n} } \right\rangle\)
So \(T^{{\lambda_{1} }} \otimes T^{{\lambda_{2} }} = T^{{\left( {\lambda_{1} + \lambda_{2} } \right)}}\).□
Appendix 2
Theorem 1
Suppose\(T_{1} ,T_{2} , \ldots\)and\(T_{k}\)are T-SFNs, where\(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\((m = 1,2, \ldots ,k)\). The synthesized result of the T-SFGMSM operator of the T-SFNs\(T_{1} ,T_{2} , \ldots\)and\(T_{k}\)is still a T-SFN, shown as follows:
$$\begin{aligned} & {\hbox{T-SFGMSM}^{{\left( {r,\lambda_{1},\lambda_{2} ,\ldots ,\lambda_{r} } \right)}} \left( {T_{1} ,T_{2}, \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \left({\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1- \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ & {\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle } \hfill \\ \end{aligned}$$
(16)
Proof
According to the operational rules of T-SFNs, we can obtain
$$T_{{m_{j} }}^{{\lambda_{j} }} = \left\langle {s_{{m_{j} }}^{{\lambda_{j} }} ,\left( {1 - \left( {1 - i_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } \right)^{1/n} ,\left( {1 - \left( {1 - d_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } \right)^{1/n} } \right\rangle$$
and
$$\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} = \left\langle {\prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} }} } ,\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - i_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} ,\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - d_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} } \right\rangle .$$
Then, we can calculate
$$\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right) = \left\langle \begin{aligned} \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{1/n} , \hfill \\ \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} ,} \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \hfill \\ \end{aligned} \right\rangle$$
and
$$\begin{array}{*{20}l} {\frac{{\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right)}}{{\left( \begin{aligned} k \hfill \\ r \hfill \\ \end{aligned} \right)}} = \left\langle {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} ,} \right.} \hfill \\ {\left. {\left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} ,\left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right\rangle } \hfill \\ \end{array}$$
So the comprehensive result of the T-SFGMSM operator is
$$\left( {\frac{{\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right)}}{{\left( \begin{aligned} k \hfill \\ r \hfill \\ \end{aligned} \right)}}} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} = \left\langle {\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$
That proves Eq. (16) is right.□
Appendix 3
(1) Idempotency: If \(T_{1} ,T_{2} , \ldots ,\) and \(T_{k}\) are T-SFNs meeting the condition with\(T_{m} = \left\{ {s_{m} ,i_{m} ,d_{m} } \right\} = T = \left\{ {s,i,d} \right\}\)\((m = 1,2, \ldots ,k)\). Then, \(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = T\).
Proof.
According to the above Theorem 1, we can obtain that \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle = T = \left\langle {s,i,d} \right\rangle\) for any \(m = 1,2, \ldots ,k\).
$$\begin{array}{*{20}l} {\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ {\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,} \hfill \\ { \left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - s^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) \times n}} } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ {\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ { = \left\langle {\left( {\left( {1 - \left( {1 - s^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) \times n}} } \right)} \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ {\left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left. {\left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle } \hfill \\ { = \left\langle {s,} \right.i,\left. d \right\rangle } \hfill \\ \end{array}$$
□
Appendix 4
(2) Monotonicity: If \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) and \(\hat{T}_{m} = \left\langle {\hat{s}_{m} ,\hat{i}_{m} ,\hat{d}_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) are any two sets of T-SFNs. They accord the prerequisite “\(\hat{s}_{m} \le s_{m}\), \(\hat{i}_{m} \le i_{m}\) and \(\hat{d}_{m} \ge d_{m}\),” then\(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right).\)
Proof
Suppose that \(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) = \hat{T} = \left\langle {\hat{s},\hat{i},\hat{d}} \right\rangle\) and \(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = T = \left\langle {s,i,d} \right\rangle\), then
$$\hat{s} = \left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {\hat{s}_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,$$
$$s = \left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ;$$
$$\hat{i} = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{i}_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$i = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ;$$
$$\hat{d} = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{d}_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$d = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} .$$
In order to prove this property, we need to compute their score function values \(S(\hat{T})\) and \(S(T)\), and their accuracy function values \(A(\hat{T})\) and \(A(T)\) to compare their synthesized results, i.e., \(\hat{T} \le T\). Firstly, based on the conditions \(\hat{s}_{m} \le s_{m}\), \(\hat{i}_{m} \le i_{m}\) and \(\hat{d}_{m} \ge d_{m}\), we can get the compared results of their MD, AMD and NMD.
-
1.
For the membership degree
Based on \(\hat{s}_{m} \le s_{m}\), we can get
$$\left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {\hat{s}_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} \le \left( {\left( {1 - \left( {\prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} \times n}} } } \right)} } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}}$$
That is \(\hat{s}_{m} \le s_{m}\)
-
2.
For the abstinence degree
Based on \(\hat{i}_{m} \le i_{m}\) , we can obtain
$$\begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{i}_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \le \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned}$$
That is \(\hat{i}_{m} \le i_{m}\)
-
3.
For the non-membership degree
Based on \(\hat{d}_{m} \ge d_{m}\) , we can obtain
$$\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{d}_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$
$$\ge \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{1/\left( \begin{array}{l} k \\ r \end{array} \right)}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$
That is \(\hat{d}_{m} \ge d_{m}\)Thus, it can be obtained that \(S(\hat{T}) = \hat{s}^{n} - \hat{d}^{n} \le S(T) = s^{n} - d^{n}\). Next, we explore two cases.
-
1.
If \(S(\hat{T}) < S(T)\), then \(\hat{T} < T\) according to Definition 4.
-
2.
If \(S(\hat{T}) = S(T)\), then \(\hat{s} = s\), \(\hat{d} = d\) Because \(\hat{i} \le i\), so \(A(\hat{T}) = \hat{s}^{n} + \hat{i}^{n} { + }\hat{d}^{n} = A(T) = s^{n} + i^{n} { + }d^{n}\), which testifies \(\hat{T} \le T\).
In conclusion, the synthesized result \(\hat{T} \le T\), which explains\(\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right)\)□
Appendix 5
(3) Boundedness: Suppose \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) is any a set of T-SFNs, \(T^{ - } = \mathop { \hbox{min} }\limits_{m} T_{m}\) and \(T^{ + } = \mathop { \hbox{max} }\limits_{m} T_{m}\), then \(T^{ - } \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \cdots ,T_{k} } \right) \le T^{ + }\).
Proof
Owing to \(T_{m} \ge T^{ - } = \mathop { \hbox{min} }\limits_{m} T_{m}\), based on the Monotonicity and Idempotency of the novel \(\hbox{T-SFGMSM}\) operator, the following results can be obtained:
$$\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) \ge \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T^{ - } ,T^{ - } , \ldots ,T^{ - } } \right) = T^{ - }$$
comparably, the corresponding result for \(T^{ + } = \mathop { \hbox{max} }\limits_{m} T_{m}\) can be obtained:
$$\hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T^{ + } ,T^{ + } , \ldots ,T^{ + } } \right) = T^{ + }$$
Therefore, \(T^{ - } \le \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) \le T^{ + }\).□
Appendix 6
Theorem 3
Let\(T_{1} ,T_{2} , \cdots\)and\(T_{k}\)be T-SFNs, where\(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(m = \left( {1,2, \ldots ,k} \right)\), and let the weight of input argument\(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(m = \left( {1,2, \ldots ,k} \right)\)be\(\omega_{m}\), where\(\omega_{m} \in \left[ {0,1} \right]\)and\(\sum\nolimits_{m = 1}^{k} {\omega_{m} } = 1\). Then, the synthesized result of the\(\hbox{T-SFGMSM}\)operator of the T-SFNs\(T_{1} ,T_{2} , \ldots\)and\(T_{k}\)is still a T-SFN, shown as follows:
$$\begin{array}{*{20}l} {{\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = } \hfill \\ {\left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,} \right.} \hfill \\ {\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle \left( {1 \le r < k} \right)} \hfill \\ {\left\langle {\left( {\prod\limits_{m = 1}^{r} {s_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - i_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - d_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle \left( {r = k} \right)} \hfill \\ \end{array}$$
(18)
Proof
Obtained by the operational laws of T-SFNs defined in Definition 5, Theorem 3 can be easily proved.
-
1.
For \(1 \le r < k\), we can have \(\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} = \left\langle {\prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{\lambda_{j} }} } ,\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - i_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} ,\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - d_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} } \right\rangle\)
Obtained by the operational laws of T-SFNs, we can derive the below equations:
$$\left( {1 - \sum\limits_{j= 1}^{r} {\omega_{{m_{j} }} } } \right)\left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right) = \left\langle \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} } \right)^{1/n} , \hfill \\ \left( {\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - i_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} ,\left( {\left( {1 - \prod\limits_{j = 1}^{r} {\left( {1 - d_{{m_{j} }}^{n} } \right)^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} \hfill \\ \end{aligned} \right\rangle$$
and
$$\begin{array}{*{20}l} {\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)\left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right) = } \hfill \\ {\left\langle {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} } } \right)^{1/n} , \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} ,} \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } }} } } \right\rangle } \hfill \\ \end{array}$$
then
$$\begin{array}{*{20}l} {\frac{{\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)\left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right)}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}} = } \hfill \\ {\left\langle \begin{aligned} \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} , \hfill \\ \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} ,} \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{1/n} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } \hfill \\ \end{aligned} \right\rangle } \hfill \\ {\left( {\frac{{\mathop \oplus \limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} \left( {1 - \sum\nolimits_{j= 1}^{r} {\omega_{{m_{j} }} } } \right)\left( {\mathop \otimes \limits_{j = 1}^{r} T_{{m_{j} }}^{{\lambda_{j} }} } \right)}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} = } \hfill \\ {\left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.} \hfill \\ {\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j= 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j= 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ \end{array}$$
So formula (18) is right when \(1 \le r < n\).
-
2.
For \(r = k\), we have known that
$$\mathop \otimes \limits_{m = 1}^{r} T_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} = \left\langle {\prod\limits_{m = 1}^{r} {s_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } ,\left( {1 - \prod\limits_{m = 1}^{r} {(1 - i_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{1/n} ,\left( {1 - \prod\limits_{m = 1}^{r} {(1 - d_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{1/n} } \right\rangle$$
Based on the proof of the first case when \(1 \le r < n\), we can derive the below equations:
$$\begin{array}{*{20}l} {\left( {\mathop \otimes \limits_{m = 1}^{r} T_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} = } \hfill \\ {\left\langle \begin{aligned}& \left( {\prod\limits_{m = 1}^{r} {s_{m}^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\& \left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - i_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - d_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle } \hfill \\ \end{array}$$
□
Appendix 7
(1) Idempotency: If \(T_{1} ,T_{2} , \ldots ,\) and \(T_{k}\) are T-SFNs and meet \(T_{m} = \left\langle {s_{m} , i_{m} ,d_{m} } \right\rangle = T = \left\langle {s, i,d} \right\rangle\)\((m = 1,2, \ldots ,k)\). Then, \({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = T\).
Proof
According to the above Theorem 3, we can obtain that
-
1.
For \(1 \le r < k\), we can get
$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - s^{{q \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \left( {1 - s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} }} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \left( {1 - s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}} \left( {\left( \begin{array}{*{20}l} k\\ r \\ \end{array}\right) -\sum\limits_{{1 \le m_{1} \cdots < m_{r} \le k}}^{k} {\left( {\sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} }\right)}}} \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {\sum\limits_{j = 1}^{r} {\omega_{{m_{j} }} } } \right)} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \left( {1 - s^{{q \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{m_{j} = 1}}^{k} {\left( {\left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)\omega_{{m_{j} }} } \right)} } \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{m_{j} = 1}}^{k} {\left( {\left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)\omega_{{m_{j} }} } \right)} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \sum\limits_{{m_{j} = 1}}^{k} {\left( {\left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)\omega_{{m_{j} }} } \right)} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \left( {1 - s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)} \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)} \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}\left( {\left( \begin{array}{l} k \\ r \end{array} \right) - \left( \begin{array}{l} k - 1 \\ r - 1 \end{array} \right)} \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle \begin{aligned} \left( {\left( {1 - \left( {1 - s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right) } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {1 - \left( {1 - (1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \left( {1 - (1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)} \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle \begin{aligned} \left( {\left( {s^{{n \times \left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {(1 - i^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {u ,v} \right\rangle$$
-
2.
For \(r = k\), we can get
$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) =$$
$$\left\langle \begin{aligned} \left( {\prod\limits_{m = 1}^{r} {s^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - i^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - d^{n} )^{{\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$${ = }\left\langle {\left( {s^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,\left( {1 - \left( {(1 - i^{n} )^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$
$$= \left\langle \begin{aligned} \left( {s^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {(1 - i^{n} )^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\sum\nolimits_{m = 1}^{r} {\left( {\lambda_{m} + \frac{{1 - k\omega_{m} }}{k - 1}} \right)} }} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle \begin{aligned} \left( {s^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) + \frac{{\sum\nolimits_{m = 1}^{r} {\left( {1 - k\omega_{m} } \right)} }}{k - 1}}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\ \left( {1 - \left( {(1 - i^{n} )^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) + \frac{{\sum\nolimits_{m = 1}^{r} {\left( {1 - k\omega_{m} } \right)} }}{k - 1}}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right) + \frac{{\sum\nolimits_{m = 1}^{r} {\left( {1 - k\omega_{m} } \right)} }}{k - 1}}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
Because \(r = k\) and \(\sum\nolimits_{m = 1}^{k} {\omega_{m} } = 1\), we have \(\sum\nolimits_{m = 1}^{r} {\left( {1 - k\omega_{m} } \right)} = k - k\sum\nolimits_{m = 1}^{k} {\omega_{m} } = 0\) and the upper equality becomes the following form:
$$\begin{aligned} \left\langle {\left( {s^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,\left( {1 - \left( {(1 - i^{n} )^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {(1 - d^{n} )^{{\left( {\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} } \right)}} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle \hfill \\ = \left\langle {s,\left( {1 - (1 - i^{n} )} \right)^{1/n} ,\left( {1 - (1 - d^{n} )} \right)^{1/n} } \right\rangle = \left\langle {s,i,d} \right\rangle \hfill \\ \end{aligned}$$
Therefore, the \({\hbox{T-SFWGMSM}}\) operator has the Idempotency property.□
Appendix 8
(2) Monotonicity: If \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) and \(\hat{T}_{m} = \left\langle {\hat{s}_{m} ,\hat{i}_{m} ,\hat{d}_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) are any two sets about T-SFNs. They accord the prerequisite \(\hat{s}_{m} \le s_{m}\), \(\hat{i}_{m} \le i_{m}\) and \(\hat{d}_{m} \ge d_{m}\), then \({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) \le {\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right).\)
Proof
Similar to the monotonicity property of the \({\hbox{T-SFWGMSM}}\) operator, the following formulas can be assumed:\({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) = \hat{T} = \left\langle {\hat{s},\hat{i},\hat{d}} \right\rangle\) and \({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = T = \left\langle {s,i,d} \right\rangle\). Since formula (18) is divided into two cases, we discuss each case separately.
-
1.
For \(1 \le r < k\), we can get
$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. {\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} } \right\rangle$$
$$\hat{s} = \left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {\hat{s}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,$$
$$s = \left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,$$
$$\hat{i} = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{i}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$i = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$\hat{d} = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{d}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,$$
$$d = \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} .$$
Because \(\hat{s}_{m} \le s_{m}\), \(\hat{i}_{m} \le i_{m}\) and \(\hat{d}_{m} \ge d_{m}\), it is easy to obtain the following inequalities:
$$\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {\hat{s}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} \le \left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}}$$
$$\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{i}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \le \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$
and
$$\left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - \hat{d}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$
$$\ge \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\omega_{{m_{j} }} } }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n}$$
i.e., \(\hat{s} \le s\) and \(\hat{i} \le i\).Thus, it can be obtained that \(S(\hat{T}) = \hat{s}^{n} - \hat{d}^{n} \le S(T) = s^{n} - d^{n}\). Next, we discuss two cases.
-
(a) If \(S(\hat{T}) < S(T)\), then \(\hat{T} < T\) according to Definition 4.
-
(b) If \(S(\hat{T}) = S(T)\), then \(\hat{s} = s\), \(\hat{d} = d\) Because \(\hat{i} \le i\), so \(A(\hat{T}) = \hat{s}^{n} + \hat{i}^{n} { + }\hat{d}^{n} = A(T) = s^{n} + i^{n} { + }d^{n}\), which testifies \(\hat{T} < T\).
To sum up, the synthesized result is \(\hat{T} < T\).
-
2.
For \(r = k\), its proof process is similar to the one of the first case where \(1 \le r < k\), so we omit it here.
According to (i) and (ii), we can get \(\hat{T} \le T\), which explains \({\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {\hat{T}_{1} ,\hat{T}_{2} , \ldots ,\hat{T}_{k} } \right) \le {\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right).\)□
Appendix 9
(3) Boundedness: Let \(T_{m} = \left\langle {s_{m} ,i_{m} ,d_{m} } \right\rangle\)\(\left( {m = 1,2, \ldots ,k} \right)\) be any a set of T-SFNs, \(T^{ - } = \mathop { \hbox{min} }\limits_{m} T_{m}\) and\(T^{ + } = \mathop { \hbox{max} }\limits_{m} T_{m}\), then \(T^{ - } \le {\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) \le T^{ + }\).
Because the certification process is same with the one of corresponding Boundedness property of the \(\hbox{T-SFGMSM}\) operator, we omit it here.
Similarly, we also observe many particular instances about the T-SFWGMSM operator with different parameters. Here, we just introduce a particular instance of this operator.
When \(\omega_{m} = \frac{1}{k}\)\(\left( {m = 1,2, \ldots ,k} \right)\), the proposed \({\hbox{T-SFWGMSM}}\) operator is simplified into the \(\hbox{T-SFGMSM}\) operator.
Proof
According to Eq. (18), we should take two cases into account.
-
1.
For \(1 \le r < k\), we know\(\omega_{m} = \frac{1}{k}\)\(\left( {m = 1,2, \ldots ,k} \right)\), so we can get
$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) = \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\frac{1}{k}} }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\frac{1}{k}} }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \sum\nolimits_{j = 1}^{r} {\frac{1}{k}} }}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{{1 - \frac{r}{k}}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \frac{r}{k}}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{{1 - \frac{r}{k}}}{{\left( \begin{array}{*{20}l} k - 1 \\ r \\ \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle {\left( {\left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {s_{{m_{j} }}^{{n \times \lambda_{j} }} } } \right)^{{\frac{1}{{\left( \begin{array}{l} k \\ r \end{array} \right)}}}} } } \right)^{1/n} } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} ,} \right.$$
$$\left. \begin{aligned} \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\left( \begin{array}{l} k \\ r \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} , \hfill \\ \left( {1 - \left( {1 - \prod\limits_{{1 \le m_{1} < \cdots < m_{r} \le k}} {\left( {1 - \prod\limits_{j = 1}^{r} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\left( \begin{array}{l} k \\ r \end{array} \right)}}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \hbox{T-SFGMSM}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right).$$
-
2.
For \(r = k\), based on\(\omega_{m} = \frac{1}{k}\)\(\left( {m = 1,2, \ldots ,k} \right)\), we have
$${\hbox{T-SFWGMSM}}^{{\left( {r, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{r} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{k} } \right) =$$
$$\left\langle \begin{aligned} &\left( {\prod\limits_{m = 1}^{r} {s_{m}^{{\lambda_{m} + \frac{{1 - k \times \frac{1}{k}}}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} , \hfill \\& \left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - i_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k \times \frac{1}{k}}}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{r} {(1 - d_{m}^{n} )^{{\lambda_{m} + \frac{{1 - k \times \frac{1}{k}}}{k - 1}}} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{r} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
$$= \left\langle \begin{aligned}& \left( {\prod\limits_{m = 1}^{k} {s_{m}^{{\lambda_{m} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} , \hfill \\& \left( {1 - \left( {\prod\limits_{m = 1}^{k} {(1 - i_{m}^{n} )^{{\lambda_{m} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{m = 1}^{k} {(1 - d_{m}^{n} )^{{\lambda_{m} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
By Theorem 1, we can see
$$\hbox{T-SFGMSM}^{{\left( {k, \lambda_{1} , \lambda_{2} , \ldots , \lambda_{k} } \right)}} \left( {T_{1} ,T_{2} , \ldots ,T_{K} } \right) =$$
$$\left\langle \begin{aligned} \left( {\prod\limits_{j = 1}^{k} {s_{{m_{j} }}^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} , \hfill \\ \left( {1 - \left( {\prod\limits_{j = 1}^{k} {(1 - i_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} } \right)^{1/n} ,\left( {1 - \left( {\prod\limits_{j = 1}^{k} {(1 - d_{{m_{j} }}^{n} )^{{\lambda_{j} }} } } \right)^{{\frac{1}{{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{k} }}}} } \right)^{1/n} \hfill \\ \end{aligned} \right\rangle$$
Therefore, when the weights of input arguments are assigned to equal values, the proposed T-SFWGMSM operator is simplified as the T-SFGMSM operator.□