Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fuzzy Regression Model Based on Incentre Distance and Application to Employee Performance Evaluation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Fuzzy regression model is developed to construct the relationship between independent variable and dependent variable in a fuzzy environment. In order to increase the explanatory performance of fuzzy regression model, the least-squares method usually is applied to determine the numeric coefficients based on the concept of distance. In this paper, we consider the fuzzy linear regression model with fuzzy input, fuzzy output, and crisp parameters, introduce a new distance based on the incentre point of triangular fuzzy number, merge least-squares method with the new incentre distance, and propose least-squares incentre distance (LSID) method. Finally, an example of employee job performance is given to illustrate the effectiveness and feasibility of the method. Comparisons with existing methods show that the calculation of LSID method is simpler on the premise of total estimation error satisfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tanaka, H., Uejima, S., Asai, K.: Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man Cybern. 12(6), 903–907 (1982)

    Article  Google Scholar 

  2. Celminš, A.: Least squares model fitting to fuzzy vector data. Fuzzy Set Syst. 22(3), 245–269 (1987)

    Article  MathSciNet  Google Scholar 

  3. Diamond, P.: Fuzzy least squares. Inform. Sci. 46(3), 141–157 (1988)

    Article  MathSciNet  Google Scholar 

  4. Chang, Y.H., Ayyub, B.M.: Fuzzy regression methods—a comparative assessment. Fuzzy Set Syst. 119(2), 187–203 (2001)

    Article  MathSciNet  Google Scholar 

  5. Tanaka, H., Ishibuchi, H.: Identification of possibilistic linear systems by quadratic membership functions of fuzzy parameters. Fuzzy Set Syst. 41(2), 145–160 (1991)

    Article  MathSciNet  Google Scholar 

  6. Chang, P.T., Lee, E.S.: Fuzzy linear regression with spreads unrestricted in sign. Comput. Math. Appl. 28(4), 61–70 (1994)

    Article  Google Scholar 

  7. Hojati, M., Bector, C.R., Smimou, K.: A simple method for computation of fuzzy linear regression. Eur. J. Oper. Res. 166(1), 172–184 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chou, T.Y., Liang, G.S., Han, T.C.: Application of fuzzy regression on air cargo volume forecast. Qual. Quant. 45(6), 1539–1550 (2011)

    Article  Google Scholar 

  9. Hsieh, W.Y., Tsaur, R.C.: Epidemic forecasting with a new fuzzy regression equation. Qual. Quant. 47(6), 3411–3422 (2013)

    Article  Google Scholar 

  10. Liu, Y.Y., Chen, Y.Z., Zhou, J.: Fuzzy linear regression models for QFD using optimized h values. Eng. Appl. Artif. Intel. 39(3), 45–54 (2015)

    Article  Google Scholar 

  11. Chen, F.N., Chen, Y.Z., Zhou, J., Liu, Y.Y.: Optimizing h value for fuzzy linear regression with asymmetric triangular fuzzy coefficients. Eng. Appl. Artif. Intel. 47(1), 16–24 (2016)

    Article  Google Scholar 

  12. Yang, M.S., Lin, T.S.: Fuzzy least-squares linear regression analysis for fuzzy input–output data. Fuzzy Set Syst. 126(3), 389–399 (2002)

    Article  MathSciNet  Google Scholar 

  13. Coppi, R., D’Urso, P., Giordani, P., Santoro, A.: Least squares estimation of a linear regression model with LR fuzzy response. Comput. Stat. Data Anal. 51(1), 267–286 (2006)

    Article  MathSciNet  Google Scholar 

  14. Chen, L.H., Hsueh, C.C.: Fuzzy regression models using the least-squares method based on the concept of distance. IEEE Trans. Fuzzy Syst. 17(6), 1259–1272 (2009)

    Article  Google Scholar 

  15. Wu, H.C.: The construction of fuzzy least squares estimators in fuzzy linear regression models. Expert Syst. Appl. 38(11), 13632–13640 (2011)

    Google Scholar 

  16. Roldán, C., Roldán, A., Martínez-Moreno, J.: A fuzzy regression model based on distances and random variables with crisp input and fuzzy output data: a case study in biomass production. Soft Comput. 16(5), 785–795 (2012)

    Article  Google Scholar 

  17. Lee, W.J., Jung, H.Y., Yoon, J.H., Choi, S.H.: The statistical inferences of fuzzy regression based on bootstrap techniques. Soft. Comput. 19(4), 883–890 (2015)

    Article  Google Scholar 

  18. Zeng, W.Y., Feng, Q.L., Li, J.H.: Fuzzy least absolute linear regression. Appl. Soft Comput. 52(3), 1009–1019 (2017)

    Article  Google Scholar 

  19. Hesamian, G., Akbari, M.G., Asadollahi, M.: Fuzzy semi-parametric partially linear model with fuzzy inputs and fuzzy outputs. Expert Syst. Appl. 71(4), 230–239 (2017)

    Article  Google Scholar 

  20. Rouhparvar, H., Panahi, A.: A new definition for defuzzification of generalized fuzzy numbers and its application. Appl. Soft Comput. 30(3), 577–584 (2015)

    Article  Google Scholar 

  21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  22. Zhang, Q., Xing, H., Liu, F., Ye, J.: Some new entropy measures for interval-valued intuitionistic fuzzy sets based on distances and their relationships with similarity and inclusion measures. Inform. Sci. 283(11), 55–69 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kacprzyk, J.: Multistage fuzzy Control: A Prescriptive Approach. Wiley, Hoboken (1997)

    MATH  Google Scholar 

  24. Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Set Syst. 122(2), 315–326 (2001)

    Article  MathSciNet  Google Scholar 

  25. Kim, B., Bishu, R.R.: Evaluation of fuzzy linear regression models by comparing membership functions. Fuzzy Set Syst. 100(1), 343–352 (1998)

    Article  Google Scholar 

  26. Jung, H.Y., Yoon, J.H., Choi, S.H.: Fuzzy linear regression using rank transform method. Fuzzy Set Syst. 274(9), 97–108 (2015)

    Article  MathSciNet  Google Scholar 

  27. D’Urso, P.: Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. Comput. Stat. Data Anal. 42(1), 47–72 (2003)

    Article  MathSciNet  Google Scholar 

  28. Kao, C., Chyu, C.L.: A fuzzy linear regression model with better explanatory power. Fuzzy Set Syst. 126(3), 401–409 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the editor and the anonymous reviewers for their constructive comments and suggestions that have led to an improved version of this paper. This paper is supported by the Humanities and Social Science Planning Fund of Ministry of Education of China (No. 18YJCZH036) and the Fundamental Research Fund for the Central University of China (No. 2015B28014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbing Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Yang, S., Ma, H. et al. Fuzzy Regression Model Based on Incentre Distance and Application to Employee Performance Evaluation. Int. J. Fuzzy Syst. 20, 2632–2639 (2018). https://doi.org/10.1007/s40815-018-0536-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0536-x

Keywords

Navigation