Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Biopolymer “Chitosan” has received much interest for potential wide application in agriculture due to its excellent biocompatibility, biodegradability and bioactivity. This naturally occurring molecule with interesting physiological potential has been getting more attention in recent years. Chitosan enhanced the efficacy of plants to reduce the deleterious effect of unfavorable conditions as well as on plant growth. Chitosan affects various physiological responses like plant immunity, defense mechanisms involving various enzymes such as, phenylalanine ammonium lyase, polyphenol oxidase, tyrosine ammonia lyase and antioxidant enzymes viz., activities superoxide dismutase, catalase and peroxide against adverse conditions. Recent studies have shown that chitosan induces mechanisms in plants against various biotic (fungi, bacteria, and insects) and abiotic (salinity, drought, heavy metal and cold) stresses and helps in formation of barriers that enhances plant's productivity. This paper takes a closer look at the physiological responses of chitosan molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal, G. K., Rakwal, R., Tamogami, S., Yonekura, M., Kubo, A., & Saji, H. (2002). Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiology and Biochemistry, 40, 1061–1069.

    Article  CAS  Google Scholar 

  • Ahmad, I., Basra, S. M. A., Afzal, I., Farooq, M., & Wahid, A. (2013). Growth improvement in spring maize through exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide. International Journal of Agriculture and Biology, 15, 95–100.

    CAS  Google Scholar 

  • Badawya, M. E. I., & Rabeab, E. I. (2009). Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biology Technology, 51, 110–117.

    Article  Google Scholar 

  • Barka, A. E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608–614.

    Article  Google Scholar 

  • Batool, M., & Asghar, R. (2013). Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasia Journal of Bioscience, 7, 69–76.

    Google Scholar 

  • Bautista, B. S., Hernandez, L. M., Bosquez, M. E., & Wilson, C. L. (2003). Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection, 22, 1087–1092.

    Article  Google Scholar 

  • Ben, B. N., Ardi, R., Pinto, R., Aki, C., & Fallik, E. (2003). Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection, 22, 285–290.

    Article  Google Scholar 

  • Benhamou, N., Lafontaine, L. J., & Nicole, M. (1994). Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology, 84, 1432–1444.

    Article  CAS  Google Scholar 

  • Bittelli, M. M., Flury, G., Campbell, S., & Nichols, E. J. (2001). Reduction of transpiration through foliar application of chitosan. Agricultural and Forest Meteorology, 107, 167–175.

    Article  Google Scholar 

  • Cabrera, J. C., & Cutsem, P. V. (2005). Preparation of chitooligosaccharides with degrees of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochemical Engineering Journal, 25, 165–172.

    Article  CAS  Google Scholar 

  • Chandrkrachang, S., Sompongchaikul, P., & Sangtain, S. (2005). Profitable spinoff from using chitosan in orchid farming in Thailand. Journal of Metals, Materials and Mineral, 15, 45–48.

    CAS  Google Scholar 

  • Chen, H. P., & Xu, L. L. (2005). Isolation and characterization of a novel chitosan-binding protein from non-heading Chinese cabbage leaves. Journal of Integral Plant Biology, 47, 452–456.

    Article  CAS  Google Scholar 

  • Chen, Y. F., Zhan, Y., Zhao, X. M., Guo, P., An, H. L., Du, Y. G., et al. (2009). Functions of oligochitosan induced protein kinase in tobacco mosaic virus resistance and pathogenesis related proteins in tobacco. Plant Physiology and Biochemisrty, 47, 724–731.

    Article  CAS  Google Scholar 

  • Cho, M. H., No, H. K., & Prinyawiwatkul, W. (2008). Chitosan treatments affect growth and selected quality of sunflower sprouts. Journal of Food Science, 73, 570–577.

    Google Scholar 

  • Cote, F., & Hahn, M. G. (1994). Oligosaccharin: Structures and signal transduction. Plant Molecular Biolology, 26, 1379–1411.

    Article  CAS  Google Scholar 

  • Dixon, R. A., Harrison, M. J., & Lamb, C. J. (1994). Early events in the activation of plant defenses. Annual Review of Phytopatholgy, 32, 479–510.

    Article  CAS  Google Scholar 

  • Farouk, S., Mosa, A. A., Taha, A. A., Ibrahim, H. M., & EL-Gahmery, A. M. (2011). Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress. Journal of Stress Physiology and Biochemistry, 7, 99–116.

    Google Scholar 

  • Farmer, E. E., & Ryan, C. A. (1992). Octadecanoid precursors of jasmonic acid activate the synthesis of wound inducible proteinase inhibitors. Plant cell, 4, 129–134.

  • Felt, O., Buri, P., & Gurny, R. (1998). Chitosan: A unique polysaccharide for drug delivery. Drug Development Industrial Pharmacy, 24, 979–993.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C. H., Maud, L., & Kunert, K. J. (1994). Photooxidative stress in plants. Plant Physiology, 92, 696–717.

    Article  CAS  Google Scholar 

  • Ge, L. L., Zhang, H. Y., Chen, K. P., Ma, L. C., & Xu, Z. L. (2010). Effect of chitin on the antagonistic activity of Rhodotorula glutinis against Botrytis cinerea in strawberries and the possible mechanisms involved. Food Chemistry, 120, 490–495.

    Article  CAS  Google Scholar 

  • George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. Journal of Control Release, 114, 1–14.

  • Gerber, I. B., Zeidler, D., Durner, J., & Dubery, I. A. (2004). Early perception responses of Nicotiana tabacum cells in response to lipopolysaccharides from Burkholderia cepacia. Planta, 218, 647–657.

    Article  CAS  PubMed  Google Scholar 

  • Gozzo, F. (2003). Systemic acquired resistance in crop protection: from nature to a chemical approach. Journal of Agricultural and Food Chemistry, 51, 4487–4503.

    Article  CAS  PubMed  Google Scholar 

  • Guan, Y. J., Hu, J., Wang, X. J., & Shao, C. X. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B, 10, 427–433.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo, H. L., Du, Y. G., Bai, X. F., & Zhao, X. M. (2003). Effects of active oxygen on suspended cotton cell culture by oligochitosan. Chinese Journal of Marine Drugs, 1, 11–12.

    Google Scholar 

  • Guo, W. H., Ye, Z. Q., Wang, G. L., Zhao, X. M., Yuan, J. L., & Du, Y. G. (2009). Measurement of oligochitosan–tobacco cell interaction by fluorometric method using europium complexes as fluorescence probes. Talanta, 78, 977–982.

    Article  CAS  PubMed  Google Scholar 

  • Hadwiger, L. A. (2008). Pea–Fusarium solani interactions contributions of a system toward understanding disease resistance. Phytopathology, 98, 372–379.

    Article  CAS  PubMed  Google Scholar 

  • Hadwiger, L. A. (2009). Localization predictions for gene products involved in non-host resistance responses in a model plant/fungal pathogen interaction. Plant Science, 177, 257–265.

    Article  CAS  Google Scholar 

  • Hadwiger, L. A. (2013). Multiple effects of chitosan on plant systems: Solid science or hype. Plant Science, 208, 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Haggag, M. W. (2007). Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. African Journal of Biotechnology, 6, 1568–1577.

    CAS  Google Scholar 

  • Hamel, L., Miles, G. P., Samuel, M. A., Ellis, B. E., Seguin, A., & Beaudoin, N. (2005). Activation of stress-responsive mitogen-activated protein kinase pathways in hybrid poplar (Populus trichocarpa × Populus deltoides). Tree Physiology, 25, 277–288.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, T., Yun, D. J., & Yamada, Y. (1993). Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry, 32, 713–718.

    Article  CAS  Google Scholar 

  • Hejazi, R., & Amiji, M. (2003). Chitosan-based gastrointestinal delivery systems. Journal of Controlled Release, 89, 151–165.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, M. P., Almenar, E., Ocio, M. J., & Gavara, R. (2006). Effect of calcium dipsand chitosan coatings on postharvest life of strawberries (Fragaria x ananass). Postharvest Biology Technology, 39, 247–253.

    Article  Google Scholar 

  • Hien, Q. N. (2004). Radiation processing of chitosan and some biological effects. Radiation Processing of Polysaccharides, 1, 67–73.

    Google Scholar 

  • Hirano, S. (1988). The activation of plant cells and their self-defence function against pathogens in connection with chitosan. Nippon Nogeikagaku Kaishi, 62, 293–295.

    Article  Google Scholar 

  • Iriti, M., & Faoro, F. (2008). Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiology and Biochemistry, 46, 1106–1111.

    Article  CAS  PubMed  Google Scholar 

  • Iriti, M., Sironi, M., Gomarasca, S., Casazza, A. P., Soave, C., & Faoro, F. (2006). Cell death- ediated antiviral effect of chitosan in tobacco. Plant Physiology and Biochemistry, 44, 893–900.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., & Li, Y. (2001). Effect of chitosan coating on postharvest life and quality of longan fruit. Food Chemistry, 73, 139–143.

    Article  CAS  Google Scholar 

  • Kafetzopoulos, D., Martinou, A., & Bouriotis, V. (1993). Bioconversion of chitin to chitosan: Purification and characterization of chitin deacetylase from Mucor rouxii. Proceedings of the National Academy of Sciences of the United States of America, 90, 2564–2568.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamble, S. P., Jagtap, S., Labhsetwar, N. K., Thakare, D., Godfrey, S., Devotta, S., & Rayalu, S. S. (2007). Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chemical Engineering Journal, 129, 173–180.

    Article  CAS  Google Scholar 

  • Katiyar, D., Hemantaranjan, A., Singh, B., & Bhanu, N. A. (2014). A future perspective in crop protection: Chitosan and its oligosaccharides. Advances in Plants Agricultural Research, 1, 06.

    Google Scholar 

  • Katiyar, D., Singh, B., Lall, A. M., & Haldar, C. (2011). Efficacy of chitooligosaccharides for the management of diabetes in alloxan induced mice: A correlative study with antihyperlipidemic and antioxidative activity. European Journal of Pharmaceutical Sciences, 44, 534–543.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. J., Chen, F., Wang, X., & Rajapakse, N. C. (2005). Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 53, 3696–3701.

    Article  CAS  PubMed  Google Scholar 

  • Klusenser, B., Young, J. J., Murata, Y., Allen, G. J., Mori, I. C., Hugouvieux, V., et al. (2002). Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiology, 130, 2152–2163.

    Article  Google Scholar 

  • Kulikov, S. N., Chirkov, S. N., Il’ina, A. V., Lopatin, S. A., & Varlamov, V. P. (2006). Effect of the molecular weight of chitosan on its antiviral activity in plants. Applied Biochemistry and Microbiology, 42, 200–203.

    Article  CAS  Google Scholar 

  • Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 104, 6017–6084.

    Article  PubMed  Google Scholar 

  • Kurita, K. (1998). Chemistry and application of chitin and chitosan. Polymer Degradation and Stability, 59, 117–120.

  • Lee, Y. S., Kim, Y. H., & Kim, S. B. (2005). Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. Horticulture Science, 40, 1333–1335.

    CAS  Google Scholar 

  • Li, Q., Dunn, E. T., Grandmaison, E. W., & Goosen, M. F. A. (1992). Applications and properties of chitosan. Journal Bioactive Compatible Polymer, 7, 370–397.

  • Li, Y., Zhao, X. M., Xia, X. Y., Luan, Y. S., Du, Y. G., & Li, F. L. (2008). Effects of oligochitosan on photosynthetic parameter of Brassica napus seedlings under drought stress. Acta Agronomy Sinica, 34, 326–329.

    Article  CAS  Google Scholar 

  • Lin, W., Hu, X., Zhang, W., Rogers, W. J., & Cai, W. (2005). Hydrogen peroxide mediates defense responses induced by chitosans of different molecular weights in rice. Journal of Plant Physiology, 162, 937–944.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L. J., Li, Y. Y., Yu, C. M., Wang, Y., Li, X. M., Li, N., et al. (2012). Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma, 249, 393–399.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L. J., Li, Y. Y., Yu, C. M., Wang, Y., Li, X. M., Li, N., et al. (2014). Germination and physiological response of wheat (Triticum aestivum) to pre-soaking with oligochitosan. International Journal of Agricultural Biology, 16, 766–770.

    Google Scholar 

  • Ma, G., Yang, D., Zhou, Y., Xiao, M., Kennedy, J. F., & Nie, J. (2008). Preparation and characterization of water-soluble N alkylated chitosan. Carbohydrate Polymer, 74, 121–126.

    Article  CAS  Google Scholar 

  • Majeti, N. V., & Kumar, R. (2000). A review of chitin and chitosan. Reactive and Functional Polymers, 46, 1–27.

    Article  Google Scholar 

  • Manjunatha, G., Roopa, K. S., Prashanth, G. N., & Shekar, S. H. (2008). Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation. Pest Management Sciences, 64, 1250–1257.

    Article  CAS  Google Scholar 

  • Menard, R., Alban, S., Ruffray, P., Jamois, F., Franz, G., Fritig, B., et al. (2004). β-1,3 Glucan sulfate, but not β-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. The Plant Cell, 16, 3020–3032.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meng, X. H., Li, B. Q., Liu, J., & Tian, S. P. (2008). Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chemistry, 106, 501–508.

    Article  CAS  Google Scholar 

  • Merkli, A., Christen, P., & Kapetanidis, I. (1997). Production of diosgenin by hairy root cultures of Trigonella foenum-graecum L. Plant Cell Reports, 16, 632–636.

    Article  CAS  Google Scholar 

  • Ning, W., Liu, Z. X., Li, Q., Guo, Z. J., & He, Z. H. (2003). Oligo saccharide oligo-GlcNAc induces hypersensitive cell death and enhances disease resistance in rice. Plant Physiology Communication, 39, 441–443.

    CAS  Google Scholar 

  • No, H. K., Lee, K. S., Kim, I. D., Park, M. J., Kim, S. D., & Meyers, S. P. (2003). Chitosan treatment affects yield, ascorbic acid content, and hardness of soybean sprouts. Journal of Food Science, 68, 680–685.

    Article  CAS  Google Scholar 

  • Ortmann, I., & Moerschbacher, M. (2006). Spent growth medium of Pantoea agglomerans primes wheat suspension cells for augmented accumulation of hydrogen peroxide and enhanced peroxidase activity upon elicitation. Planta, 224, 963–970.

    Article  CAS  PubMed  Google Scholar 

  • Park, S. I., & Zhao, Y. Y. (2004). Incorporation of a high concentration of mineral or vitamin into chitosan-based films. Journal Agricultural Food Chemistry, 52, 1933–1939.

    Article  CAS  Google Scholar 

  • Pospieszny, H. (1997). Antiviroid activity of chitosan. Crop Protection, 16, 105–106.

    Article  CAS  Google Scholar 

  • Qiuping, Z., & Wenshui, X. (2007). Effect of 1-methylcyclopropene and and/or chitosancoating treatments on storage life and quality maintenance of Indian jujube fruit. Lebensmittel-Wissenschaft und Technolnology, 40, 404–411.

    Article  Google Scholar 

  • Quang, L. L., Naotsugu, N., Masao, T., & Tomoko, N. (2006). Enhancement of plant growth activity of irradiated chitosan by molecular weight fractionation. Radioisotopes, 55, 23–27.

    Google Scholar 

  • Raj, S. N., Sarosh, B. R., & Shetty, H. S. (2006). Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease. Functional Plant Biology, 33, 563–571.

    Article  CAS  Google Scholar 

  • Rakwal, R., Tamogami, S., Agrawal, G. K., & Iwahashi, H. (2002). Octadecanoid signaling component “burst” in rice (Oryza sativa L.) Seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochemical and Biophysical Research Communications, 295, 1041–1045.

    Article  CAS  PubMed  Google Scholar 

  • Schwabish, M. A., & Struhl, K. (2004). Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Molecular Cell Biology, 24, 10111–10117.

    Article  CAS  Google Scholar 

  • Sevon, N., Hiltunen, R., & Oksman-Caldentey, K. M. (1992). Chitosan increases hyoscyamine content in hairy root cultures of Hyoscyamus muticus. Pharmaceutical and Pharmacological Letters, 2, 96–99.

    CAS  Google Scholar 

  • Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science and Technology, 10, 37–51.

    Article  CAS  Google Scholar 

  • Shao, C. X., Hu, J., Song, W. J., & Hu, W. M. (2005). Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling. Agriculture and Life Science, 31, 705–708.

    CAS  Google Scholar 

  • Sivakumar, D., Sultanbawa, Y., Ranasingh, N., Kumara, P., & Wijesundera, R. L. C. (2005). Effect of combined application of chitosan and carbonate salts on the incidence of anthracnose and on the quality of papaya during storage. Journal of Horticulture Sciences Biotechnology, 80, 447–452.

    CAS  Google Scholar 

  • Sui, X. Y., Zhang, W. Q., Xia, W., & Wang, Q. (2002). Effect of chitosan as seed coating on seed germination and seedling growth and several physiological and biochemical indexes in rapeseed. Plant Physiology Communication, 38, 225–227.

    CAS  Google Scholar 

  • Tan, T. K., Loon, W. S., Khor, E., & Loh, C. S. (1998). Infection of Spathoglottis plicata (Orchidaceae) seeds by mycorrhizal fungus. Plant Cell Reports, 18, 14–19.

    Article  CAS  Google Scholar 

  • Terry, L. A., & Joyce, D. C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops: A brief review. Postharvest Biology and Technology, 32, 1–13.

    Article  Google Scholar 

  • Vander, P., Kjell, M. V., Domard, A., El-Gueddari, N. E., & Moerschbacher, B. M. (1998). Comparison of the ability of partially N-acetylated chitosans and oligosaccharides to elicit resistance in wheat leaves. Plant Physiology, 118, 1353–1359.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vasyukova, N. I., Zinoveva, L. I., Iĺinskaya, E. A., Perekhod, G. I., Chalenko, N. G., Iĺina, A. V., et al. (2001). Modulation of plant resistance to diseases by water-soluble chitosan. Applied Biochemistry and Microbiology, 37, 103–109.

    Article  CAS  Google Scholar 

  • Weake, V. M., & Workman, J. I. (2008). Histone ubiquitination triggering gene activity. Molecular Cell, 29, 653–663.

    Article  CAS  PubMed  Google Scholar 

  • White, P. J., & Broadley, M. (2003). Calcium in plants. Annals of Botany, 92, 487–511.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wojdyla, A. T. (2004). Chitosan (biochikol 020 PC) in the control of some ornamental foliage diseases. Communications in Agricultural and Applied Biological Sciences, 69, 705–715.

    CAS  PubMed  Google Scholar 

  • Xu, Q. J., Nian, Y. G., Jin, X. C., Yan, C. Z., Liu, J., & Jiang, G. M. (2007). Effects of chitosan on growth of an aquatic plant (Hydrilla verticillata) in polluted waters with different chemical oxygen demands. Journal of Environmental Sciences, 19, 211–221.

  • Yamada, A., Shibbuya, N., Komada, O., & Akatsuka, T. (1993). Induction of phytoalexin formation in suspension-cultured rice cells by N-acetyl chitooligosaccharides. Biosciences Biotechnology Biochemistry, 57, 405–409.

    Article  CAS  Google Scholar 

  • Yin, H., Bai, X. F., & Du, Y. G. (2008). The primary study of oligochitosan inducing resistance to Sclerotinia scleraotiorum on B. napus. Journal of Biotechnology, 136, 600–601.

    Article  Google Scholar 

  • Yin, H., Zhao, X., & Du, Y. (2010). Oligochitosan a plant diseases vaccine—A review. Carbohydrate Polymer, 82, 1–8.

    Article  CAS  Google Scholar 

  • Yu, G., & Meuhlbauer, G. (2001). Benzothiadiazole-induced gene expression in wheat spikes does not provides resistance to Fusarium head blight. Physiological and Molecular Plant Pathology, 59, 129–139.

    Article  CAS  Google Scholar 

  • Yu, T., Wang, L. P., Yin, Y., Wang, Y. X., & Zheng, X. D. (2008). Effect of chitin on the antagonistic activity of Cryptococcus laurentii against Penicillium expansum in pear fruit. International Journal of Food Microbiology, 122, 44–48.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, D., & Luo, X. (2012). Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Journal of Soil Science, 2, 282–288.

    Google Scholar 

  • Zhang, X. K., Tang, Z. L., Zhan, L., et al. (2002). Influence of chitosan on induction rapeseed resistance. Agricultural Science in China, 35, 287–290.

    CAS  Google Scholar 

  • Zhao, Y., Tu, K., Su, J., Tu, S., Hou, Y., et al. (2009). Heat treatment in combination with antagonistic yeast reduces diseases and elicits the active defense responses in harvested cherry tomato fruit. Journal Agriculture Food Chemistry, 57, 7565–7570.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thanks the University Grant Commission New Delhi for financial support and special thanks to Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi for providing necessary facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepmala Katiyar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katiyar, D., Hemantaranjan, A. & Singh, B. Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Ind J Plant Physiol. 20, 1–9 (2015). https://doi.org/10.1007/s40502-015-0139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-015-0139-6

Keywords

Navigation