Abstract
To develop in vitro callus induction of Phyllanthus pulcher and investigate secondary metabolite activities, methyl jasmonate (MeJA) and salicylic acid (SA) as two abiotic elicitors were evaluated. Growth and secondary metabolite production of callus from P. pulcher grown in Murashige and Skoog medium, supplemented with 1 mg L−1 2, 4-dinitrophenylhydrazine (2, 4-D) and SA with a lower concentration (≤5 mg L−1) showed a significant effect on callus fresh weight, while the dry weight was not affected significantly by higher concentrations. However, in secondary metabolite content, including total flavonoid and phenolic contents and antioxidant activities, significant differences among different SA concentrations were observed. The results revealed that the high concentration of MeJA (>10 mM) inhibits the callus growth, and 1 mM of MeJA resulted in the highest yield for total flavonoid and phenolic contents and antioxidant activity. A very strong positive relationship (0.969) among TFC, TPC, and antioxidant activity was revealed.
Similar content being viewed by others
Abbreviations
- 2,4-D:
-
2,4-Dichlorophenoxy acetic acid
- AA:
-
Antioxidant activity
- ANCOVA:
-
Analysis of covariance
- ANOVA:
-
Analysis of variance
- DMRT:
-
Duncan’s multiple range test
- DW:
-
Dry weight
- FW:
-
Fresh weight
- MeJA:
-
Methyl jasmonate
- MS:
-
Murashige and Skoog (1962) medium
- PGR:
-
Plant growth regulators
- RCBD:
-
Randomized complete block design
- SA:
-
Salicylic acid
- TFC:
-
Total flavonoid content
- TPC:
-
Total phenolic content
References
Ali MB, Hahn E-J, Paek K-Y (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12:607–621
Bagalkotkar G (2007) Isolation and characterisation of compounds from ‘Naga Buana’ (Phyllanthus pulcher) and ‘Similit Matinggi’ (Casearia capitellata) and their cytotoxic effects on cancer cell lines. In: Faculty of medicine and health science, vol PhD. vol 7188. Universiti Putra Malaysia, Serdang
Basse CW, Fath A, Boller T (1993) High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J Biol Chem 268:14724–14731
Colombo R et al (2009) Validated HPLC method for the standardization of Phyllanthus niruri (herb and commercial extracts) using corilagin as a phytochemical marker. Biomed Chromatogr 23:573–580. doi:10.1002/bmc.1155
Cosio EG, Frey T, Verduyn R, van Boom J, Ebel J (1990) High-affinity binding of a synthetic heptaglucoside and fungal glucan phytoalexin elicitors to soybean membranes. FEBS Lett 271:223–226
Dixon RA, Dey PM, Murphy DL, Whitehead IM (1981) Dose responses for Colletotrichum lindemuthianum elicitor-mediated enzyme induction in French bean cell suspension cultures. Planta 151:272–280. doi:10.1007/bf00395180
Dörnenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzym Microb Technol 17:674–684. doi:10.1016/0141-0229(94)00108-4
Duangporn P, Siripong P (2009) Effect of auxin and cytokinin on Phyllanthusol A production by callus cultures of Phyllanthus acidus Skeels. American-Eurasian J Agric Environ Sci 5:258–263
Fang Y, Smith M, Pepin M-F (1999) Effects of exogenous methyl jasmonate in elicited anthocyanin-producing cell cultures of ohelo (Vaccinium phalae). In Vitro Cell Dev Biol Plant 35:106–113
Farzinebrahimi R, Taha RM, Kamaludin R, Syafawati Yaacob J (2014) The effect of various media and hormones via suspension culture on secondary metabolic activities of (Cape Jasmine) Gardenia jasminoides Ellis. Sci World J 2014. doi:10.1155/2014/407284
Fernand VE (2003) Initial characterization of crude extracts from Phyllanthus amarus Schum. and Thonn. and Quassia amara L. using normal phase thin layer chromatography. Louisiana State University, Baton Rouge
Galal A (2012) Improving effect of salicylic acid on the multipurpose tree Ziziphus spina-christi (L.) wild tissue culture. Am J Plant Sci 3:947–952
Heinstein PF (1985) Future approaches to the formation of secondary natural products in plant cell suspension cultures. J Nat Prod 48:1–9. doi:10.1021/np50037a001
Henstrand JM, McCue KF, Brink K, Handa AK, Herrmann KM, Conn EE (1992) Light and fungal elicitor induce 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase mRNA in suspension cultured cells of parsley (Petroselinum crispum L.). Plant Physiol 98:761–763
Hodzic Z, Pasalic H, Memisevic A, Srabovic M, Saletovic M, Poljakovic M (2009) The influence of total phenols content on antioxidant capacity in the whole grain extracts. Eur J Sci Res 28:471–477
Ismail M, Bagalkotkar G, Iqbal S, Adamu HA (2012) Anticancer properties and phenolic contents of sequentially prepared extracts from different parts of selected medicinal plants indigenous to Malaysia. Molecules 17:5745–5756
Ketchum REB, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62:97–105
Kim D-O, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326. doi:10.1016/S0308-8146(02)00423-5
Lim YY, Murtijaya J (2007) Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Sci Technol 40:1664–1669. doi:10.1016/j.lwt.2006.12.013
Lloyd G, Mc Cown B (1980) Commercially feasible micropropagation of mountain laurel Kalmia latifolia, by use of shoot tip culture. Comb Proc Int Plant Propag Soc 30:421–426
Loh SI (2007) Evaluation hepatoprotektif chloroform extract Phyllanthus pulcher wall. mϋll ex. arg. and exclusions extract from flavonoids metanolnya removal based on free radical activity. University Science Malaysia (USM), Gelugor
Masoumian M, Arbakariya A, Syahida A, Maziah M (2011) Flavonoids production in Hydrocotyle bonariensis callus tissues. J Med Plants Res 5:1564–1574
Mehmetoglu Ü, Curtis WR (1997) Effects of abiotic inducers on sesquiterpene synthesis in hairy root and cell-suspension cultures of Hyoscyomus muticus. Appl Biochem Biotechnol 67:71–77
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant J 15:473–497
Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449–460
Prakash G, Srivastava AK (2008) Statistical elicitor optimization studies for the enhancement of azadirachtin production in bioreactor Azadirachta indica cell. Biochem Eng J 40:218–226. doi:10.1016/j.bej.2007.12.017
Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338
Sakhanokho HF, Kelley RY (2009) Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv ‘Luna Red’). Afr J Biotechnol 8:1474–1481
Shilpa K, Selvakkumar C, Senthil A, Lakshmi B (2010a) In vitro root culture of Ocimum sanctum L. and evaluation of its free radical scavenging activity. Plant Cell Tissue Organ Culture 101:105–109
Shilpa K, Varun K, Lakshmi BS (2010b) An alternate method of natural drug production: eliciting secondary metabolite production using plant cell culture. J Plant Sci 5:222–247. doi:10.3923/jps.2010.222.247
Smith M, Kobayashi H, Gawienowski M, Briskin D (2002) An in vitro approach to investigate medicinal chemical synthesis by three herbal plants plant cell. Tissue Organ Culture 70:105–111. doi:10.1023/a:1016081913719
Sudha G, Ravishankar GA (2003) Elicitation of anthocyanin production in callus cultures of Daucus carota and the involvement of methyl jasmonate and salicylic acid. Acta Physiol Plant 25:249–256
Thanh N, Murthy H, Yu K, Hahn E, Paek K (2005) Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl Microbiol Biotechnol 67:197–201
Theerakulpisut P, Kanawapee N, Maensiri D, Bunnag S, Chantaranothai P (2008) Development of species-specific SCAR markers for identification of three medicinal species of Phyllanthus. J Syst Evol 46:614–621
Wickremesinhe EM, Arteea R (1993) Taxus callus cultures: initiation, growth optimization, characterization and taxol production. Plant Cell Tissue Organ Culture 35:181–193. doi:10.1007/bf00032968
Wongwicha W, Tanaka H, Shoyama Y, Putalun W (2011) Methyl jasmonate elicitation enhances glycyrrhizin production in Glycyrrhiza inflata hairy roots cultures Zeitschrift fur Naturforschung C. J Biosci 66:423
Wu J, Lin L (2002) Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: induction of plant defense responses and secondary metabolite production. Appl Microbiol Biotechnol 59:51–57
Xu YW, Zhao D, Lv SS, Yang WT, Chen JW, Wu W (2011) Salicylic acid-induced physiological responses and monoterpene accumulation in Houttuynia cordata Thunb. J Med Plants Res 5:4832–4837
Zabala MA, Angarita M, Restrepo JM, Caicedo LA, Perea M (2010) Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana. In Vitro Cell Dev Biol Plant 46:233–238
Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in Mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. doi:10.1016/S0308-8146(98)00102-2
Acknowledgments
This study was supported by University Putra Malaysia. We also thank the University of Malaya for supporting and helping to publish this research.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Danaee, M., Farzinebrahimi, R., Kadir, M.A. et al. Effects of MeJA and SA elicitation on secondary metabolic activity, antioxidant content and callogenesis in Phyllanthus pulcher . Braz. J. Bot 38, 265–272 (2015). https://doi.org/10.1007/s40415-015-0140-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40415-015-0140-3