Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Privacy protection and quantile estimation from noise multiplied data

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

In this paper we address two inferential aspects of noise multiplied magnitude microdata. First, in the context of disclosure risk assessment of tabular magnitude data, we study the consequences of noise multiplication when an intruder tries to speculate a target unit’s value in a cell based on knowledge of the perturbed cell total and values of some units within the cell. This is related to some results in Nayak et al. (J Off Stat, 2011). Second, we develop Bayesian methods to infer about a quantile of a microdata set based on their noise perturbed values. Natural applications include estimation of quartiles and median of an original microdata set when only their noise perturbed versions are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blumenthal, S., and A. Cohen. 1968a. Estimation of the larger translation parameter. Annals of mathematical statistics 39:502–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Blumenthal, S., and A. Cohen. 1968b. Estimation of the larger of two normal means. Annals of mathematical statistics 39:861–876.

    Google Scholar 

  • Brand, R. 2002. Microdata protection through noise addition. In Inference control in statistical databases, ed. J. Domingo-Ferrer, pp. 97–116. Berlin: Springer.

    Google Scholar 

  • Doyle, P., J. Lane, J. Theeuwes, and L. Zayatz. eds. 2001. Confidentiality, disclosure and data access: Theory and practical applications for statistical agencies. Amsterdam: Elsevier.

    Google Scholar 

  • Dudewicz, E.J. 1971a. Maximum likelihood estimators for non-1-1 functions. Trabojos de Estadistica y de Investigacion Operativa 22:65–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudewicz, E.J. 1971b. Maximum likelihood estimators for ranked means. Zeitschrift fūr Wahrscheinlichkeitstheorie und Verwandte Gebiete, 19, 29–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Duncan, G.T., and S.E. Fienberg. 1999. Obtaining information while preserving privacy: A Markov perturbation method for tabular data. In Eurostat statistical data protection ’98 Lisbon, pp. 351–362. Luxembourg: Eurostat.

  • Duncan, G.T., and S. Mukherjee. 2000. Optimal disclosure limitation strategy in statistical databases: Deterring tracker attacks through additive noise. Journal of the American Statistical Association 95:720–729.

    Google Scholar 

  • Duncan, G.T., and S.L. Stokes. 2004. Disclosure risk vs. data utility: The R-U confidentiality map as applied to topcoding. Chance, 17:16–20.

    MathSciNet  Google Scholar 

  • Elfessi, A., and N. Pal. 1992. Estimation of the smaller and larger of two uniform scale parameters. Communications in Statistics. Theory and Methods 21:2997–3015.

    Article  MathSciNet  MATH  Google Scholar 

  • Evans, T., L. Zayatz, and J. Slanta. 1998. Using noise for disclosure limitation of establishment tabular data. Journal of Official Statistics 4:537–551.

    Google Scholar 

  • Fong, D.K.H. 1987. Ranking and estimation of exchangeable means in balanced and unbalanced models: A Bayesian aproach. Ph.D. thesis, Purdue University.

  • Fong, D.K.H. 1992. A Bayesian approach to the estimation of the largest normal mean. Journal of Statistical Computation and Simulation 40:119–133.

    Article  MathSciNet  MATH  Google Scholar 

  • Fuller, W.A. 1993. Masking procedures for microdata disclosure limitation. Journal of Official Statistics 9:383–406.

    Google Scholar 

  • Givens, G.H., and J.A. Hoeting 2005. Computational statistics. New York: John Wiley.

    MATH  Google Scholar 

  • Karr, A.F., C.N. Kohnen, A. Oganian, J.P. Reiter, and A.P. Sanil. 2006. A framework for evaluating the utility of data altered to protect confidentiality. American Statistician 60:224–232.

    Article  MathSciNet  Google Scholar 

  • Kim, J. 1986. A method for limiting disclosure in microdata based on random noise and transformation. In Proceedings of the American Statistical Association, Section on Survey Research Methods, pp. 303–308.

  • Kim, J.J., and W.E. Winkler. 2003. Multiplicative noise for masking continuous data. Technical Report Statistics #2003-01, Statistical Research Division, U.S. Bureau of the Census, Washington D.C.

  • Kumar, S., and D. Sharma. 1993. Unbiased inestimability of ordered parameters. Statistics 24:137–142.

    Article  MathSciNet  MATH  Google Scholar 

  • Little, R.J.A. 1993. Statistical analysis of masked data. Journal of Official Statistics 9:407–426.

    Google Scholar 

  • Misra, N., R. Anand, and H. Singh. 1997. Estimation of the smaller and larger scale parameters of two exponential distributions. Statistics and Decisions 15:75–98.

    MathSciNet  MATH  Google Scholar 

  • Nayak, T., B. Sinha, and L. Zayatz. 2011. Statistical properties of multiplicative noise masking for confidentiality protection. Journal of Official Statistics 27:527–544..

    Google Scholar 

  • Shao, J. 1999. Mathematical statistics. New York: Springer.

    MATH  Google Scholar 

  • Tendick, P. 1991. Optimal noise addition for preserving confidentiality in multivariate data. Journal of Statistical Planning and Inference 27:341–353.

    Article  MathSciNet  MATH  Google Scholar 

  • van Eeden, C. 2006. Restricted parameter space estimation problems. New York: Springer.

    MATH  Google Scholar 

  • Willenborg, L.C.R.J., and T. De Waal. 2001. Elements of statistical disclosure control. New York: Springer.

    Book  MATH  Google Scholar 

  • Yancey, W.E., W.E. Winkler, and R.H. Creecy. 2002. Disclosure risk assessment in perturbative microdata protection. In Inference control in statistical databases, ed. J. Domingo-Ferrer, pp. 135–152. Springer.

Download references

Acknowledgements

We sincerely thank Martin Klein for providing us with the data set reported in Section 5, and Martin Klein and Dihua Xu for their excellent computational assistance in Section 5 while analyzing this data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal Sinha.

Additional information

This report is released to inform interested parties of ongoing research and to encourage discussion of work in progress. The views expressed in the paper are those of the authors and not necessarily those of the U.S. Census Bureau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, B., Nayak, T.K. & Zayatz, L. Privacy protection and quantile estimation from noise multiplied data. Sankhya B 73, 297–315 (2011). https://doi.org/10.1007/s13571-011-0030-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-011-0030-z

Keywords

Navigation