Abstract
Our approach aims at coupling the ever increasing off-line computing power of mainframe computers with the interactive on-line possibilities of ubiquitous low computing power devices at the early design stages in order to provide insight into the design problems and to search for candidate optimal design points. In the off-line phase, the method under investigation relies on combining an optimized space-filling sampling plan on the design parameter space with extensive finite elements (FE) simulations yielding a learning set of displacement fields. The objective of this paper is the on-line phase. We provide a rigorous mathematical presentation of a family of non-intrusive, bi-level surrogates. We focus on displacement field approximation by Proper Orthogonal Decomposition (POD) combined with kriging interpolation of coefficients. The method is illustrated with two simple, easily reproduced numerical examples of quality assessment of deep-drawing process of a cylindrical cup by on-the-fly plotting forming limit diagrams (FLDs) and related quantities enabling thus to spot improved design points.
Similar content being viewed by others
References
Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling: a practical guide, vol 1. Wiley, Hoboken
Alonso D, Velazquez A, Vega J (2009) A method to generate computationally efficient reduced order models. Comput Methods Appl Mech Eng 198(33–36):2683–2691. doi:10.1016/j.cma.2009.03.012
Alonso D, Velazquez A, Vega J (2009) Robust reduced order modeling of heat transfer in a back step flow. Int J Heat Mass Transfer 52(5–6):1149–1157. doi:10.1016/j.ijheatmasstransfer.2008.09.011
Bergmann M, Cordier L (2008) Optimal control of the cylinder wake in the laminar regime by trust-region methods and pod reduced-order models. J Comput Phys 227(16):7813–7840. doi:10.1016/j.jcp.2008.04.034, URL http://www.sciencedirect.com/science/article/pii/S0021999108002659
Berkooz G, Holmes P, Lumley J (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25:539–575
Bui D, Hamdaoui M, De Vuyst F (2013) Pod-isat: an efficient pod-based surrogate approach with adaptive tabulation and fidelity regions for parametrized steady-state pde discrete solutions. Int J Numer Methods Eng . doi:10.1002/nme.4468
Burkardt J, Gunzburger M, Lee HC (2006) Pod and cvt-based reduced-order modeling of navier-stokes flows. Comput Methods Appl Mech Eng 196(1–3):337–355. doi:10.1016/j.cma.2006.04.004, URL http://www.sciencedirect.com/science/article/B6V29-4KJV30D-1/2/af9e08f1a1009af41a1026c5a16a3601
Chahlaoui Y, Gallivan K, Van Dooren P (1999) Recursive calculation of dominant singular subspaces. SIAM J Matrix Anal Appl 25
Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404. doi:10.1007/s11831-011-9064-7
Chinesta F, Leygue A, Bordeu F, Aguado J, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) Pgd-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20:31–59. doi:10.1007/s11831-013-9080-x
Couckuyt I, Forrester A, Gorissen D, Turck FD, Dhaene T (2012) Blind kriging: implementation and performance analysis. Adv Eng Softw 49(0):1–13. doi:10.1016/j.advengsoft.2012.03.002, URL http://www.sciencedirect.com/science/article/pii/S0965997812000476
Cressie N (1990) The origins of kriging. Math Geol 22:239–252. doi:10.1007/BF00889887
Dulong JL, Druesne F, Villon P (2007) A model reduction approach for real-time part deformation with nonlinear mechanical behavior. Int J Interact Des Manuf 1(4):229–238. doi:10.1007/s12008-007-0028-y
Dunne F, Petrinic N (2005) Introduction to computational plasticity. Oxford University Press Inc, New York
Feeny B, Kappagantu R (1998) On the physical interpretation of proper orthogonal modes in vibrations. J Sound Vib 211(4):607–616. doi:10.1006/jsvi.1997.1386
Ghnatios C, Chinesta F, Cueto E, Leygue A, Poitou A, Breitkopf P, Villon P (2011) Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion. Compos A Appl Sci Manuf 42(9):1169–1178. doi:10.1016/j.compositesa.2011.05.001, URL http://www.sciencedirect.com/science/article/pii/
Ghnatios C, Masson F, Huerta A, Leygue A, Cueto E, Chinesta F (2012) Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput Methods Appl Mech Eng 213–216(0):29–41. doi:10.1016/j.cma.2011.11.018, URL http://www.sciencedirect.com/science/article/pii/S0045782511003641
Grosso A, Jamali A, Locatelli M (2009) Finding maximin latin hypercube designs by iterated local search heuristics. Eur J Oper Res 197(2):541–547. doi:10.1016/j.ejor.2008.07.028
den Hertog D, Stehouwer P (2002) Optimizing color picture tubes by high-cost nonlinear programming. Eur J Oper Res 140(2):197–211. doi:10.1016/S0377-2217(02)00063-2
Hora P (2008) Proceedings of the 7th Int. Conf. and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes Interlaken, Switzerland
Jones D (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21:345–383. doi:10.1023/A:1012771025575
LeGresley P, Alonso J (2000) Airfoil design optimization using reduced order models based on proper orthogonal decomposition. In: Fluids 2000 Conference and Exhibit, Denver, CO, 2545. AIAA, AIAA, Denver
Li WW, Wu C (1997) Columnwise-pairwise algorithms with applications to the construction of supersaturated designs. Technometrics 39(2):171–179. Cited By (since 1996) 89
Lophaven S, Nielsen H, Søndergaard J (2002) Aspects of the matlab toolbox dace, technical report imm-rep-2002-13. Tech. rep., Technical University of Denmark, Department of Informatics and Mathematical Modelling, Lyngby, Denmark
Lophaven S, Nielsen H, Søndergaard J (2002) Dace—a matlab kriging toolbox, technical report imm-tr-2002-12. Tech. rep., Technical University of Denmark, Department of Informatics and Mathematical Modelling, Lyngby, Denmark
Driesse LT, Stehouwer P, Wijker J (2002) Structural mass optimization of the engine frame of the ariane 5 esc-b. In: Proceedings of the European conference on spacecraft, structures, materials and mechanical testing
Ly HV, Tran HT (2001) Modeling and control of physical processes using proper orthogonal decomposition. Math Comput Model 33(1–3):223–236. doi:10.1016/S0895-7177(00)00240-5, URL http://www.sciencedirect.com/science/article/pii/S0895717700002405. Computation and control VI proceedings of the sixth Bozeman conference
Schonlau M (1997) Computer experiments and global optimization. PhD thesis, Univ. of Waterloo, Waterloo, Ontario
Makinouchi A (1996) Sheet metal forming simulation in industry. J Mater Proc Technol 60(1–4):19–26. doi:10.1016/0924-0136(96)02303-5. Proceedings of the 6th International Conference on Metal Forming
McKay M, Beckman R, Conover W (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61
Miled B, Ryckelynck D, Cantournet S (2013) A priori hyper-reduction method for coupled viscoelastic-viscoplastic composites. Comput Struct 119(0):95–103. doi:10.1016/j.compstruc.2012.11.017, URL http://www.sciencedirect.com/science/article/pii/S0045794912002908
Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments. J Stat Plan Infer 43(3):381–402. doi:10.1016/0378-3758(94)00035-T
My-Ha D, Lim K, Khoo B, Willcox K (2007) Real-time optimization using proper orthogonal decomposition: free surface shape prediction due to underwater bubble dynamics. Comput Fluids 36(3):499–512. doi:10.1016/j.compfluid.2006.01.016, URL http://www.sciencedirect.com/science/article/pii/S0045793006000429
Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Methods Prog Biomed 91(3):223–231. doi:10.1016/j.cmpb.2008.04.008, URL http://www.sciencedirect.com/science/article/pii/S0169260708001016
Panthi S, Ramakrishnan N, Pathak K, Chouhan J (2007) An analysis of springback in sheet metal bending using finite element method (fem). J Mater Proc Technol 186(1–3):120–124. doi:10.1016/j.jmatprotec.2006.12.026
Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, Cambridge
Rikards R, Auzins J (2004) Response surface method for solution of structural identification problems. Inverse Probl Sci Eng 12(1):59–70. Cited By (since 1996) 6
Ryckelynck D, Vincent F, Cantournet S (2012) Multidimensional a priori hyper-reduction of mechanical models involving internal variables. Comput Methods Appl Mech Eng 225–228(0):28–43. doi:10.1016/j.cma.2012.03.005, URL http://www.sciencedirect.com/science/article/pii/S0045782512000813
Sacks J, Schiller SB, Welch WJ (1989) Designs for computer experiments. Technometrics 31(1):41–47. doi:10.1080/00.401706.1989.10488474, URL http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1989.10488474
Sirovich L (1987) Turbulence and the dynamics of coherent structures. I—coherent structures. II—symmetries and transformations. III—dynamics and scaling. Q Appl Math 45:561–571
Stoughton TB, Yoon JW (2005) Sheet metal formability analysis for anisotropic materials under non-proportional loading. Int J Mech Sci 47(12):1972–2002. doi:10.1016/j.ijmecsci.2005.06.005, URL http://www.sciencedirect.com/science/article/pii/S0020740305001670
Volkwein S (2004) Model reduction using proper orthogonal decomposition, lecture notes, institute of mathematics and scientific computing. University of Graz. URL http://www.uni-graz.at/imawww/volkwein/POD.pdf
Wagoner RH (1989) Forming limit diagrams: concepts, methods, and applications. Tms
Winton C, Pettway J, Kelley C, Howington S, Eslinger OJ (2011) Application of proper orthogonal decomposition (pod) to inverse problems in saturated groundwater flow. Adv Water Resour 34(12):1519–1526. doi:10.1016/j.advwatres.2011.09.007, URL http://www.sciencedirect.com/science/article/pii/S0309170811001746
Xiao M, Breitkopf P, Filomeno Coelho R, Knopf-Lenoir C, Sidorkiewicz M, Villon P (2010) Model reduction by cpod and kriging. Struct Multidiscip Optim 41:555–574. doi:10.1007/s00158-009-0434-9
Marciniak Z, Duncan JL, Hu S (2002) The mechanics of sheet metal forming. Butterworth-Heinemann, Oxford
Acknowledgments
Emmanuel Le Franois, lecturer at Roberval Laboratory is acknowledged for his advices about the finite elements method. This research was conducted as part of the OASIS project, supported by OSEO within the contract FUI no. F1012003Z. This work was carried out in the framework of the Labex MS2T, which is funded by the French Government, through the program ”Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hamdaoui, M., Le Quilliec, G., Breitkopf, P. et al. POD surrogates for real-time multi-parametric sheet metal forming problems. Int J Mater Form 7, 337–358 (2014). https://doi.org/10.1007/s12289-013-1132-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12289-013-1132-0