Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Role of genomic imprinting in mammalian development

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Non-mendelian inheritance refers to the group of phenomena and observations related to the inheritance of genetic information that cannot be merely explained by Mendel’s laws of inheritance. Phenomenon including Genomic imprinting, X-chromosome Inactivation, Paramutations are some of the best studied examples of non-mendelian inheritance. Genomic imprinting is a process that reversibly marks one of the two homologous loci, chromosome or chromosomal sets during development, resulting in functional non-equivalence of gene expression. Genomic imprinting is known to occur in a few insect species, plants, and placental mammals. Over the years, studies on imprinted genes have contributed immensely to highlighting the role of epigenetic modifications and the epigenetic circuitry during gene expression and development. In this review, we discuss the phenomenon of genomic imprinting in mammals and the role it plays especially during fetoplacental growth and early development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

SNP:

single nucleotide polymorphism

ncRNA:

non-coding RNA

ICR:

imprint control region

DMR:

differentially methylated region

gDMR:

germline DMR

dpc:

days post coitum

lncRNA:

long non-coding RNA

eRNA:

enhancer RNA

sDMR:

somatic DMR

IG-DMR:

intergenic DMR

ART:

assisted reproductive techniques

ICSI:

intracytoplasmic sperm injection

IVF:

in vitro fertilization

IGN:

imprinted gene network

PGC:

primordial germ cells

TGC:

trophoblast giant cells

BPA:

bisphenol A

References

  • Aebischer J, Sturny R, Andrieu D, Rieusset A, Schaller F, Geib S, Raoul C and Muscatelli F 2011 Necdin protects embryonic motoneurons from programmed cell death. PLoS ONE 6 e23764

  • Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D, Eichele G and Beaudet AL 1997 Imprinted expression of the murine angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat. Genet. 17 75–78

    CAS  PubMed  Google Scholar 

  • Andrews SC, Wood MD, Tunster SJ, Barton SC, Surani MA and John RM 2007 Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev. Biol. 7 53

    PubMed  PubMed Central  Google Scholar 

  • Andrieu D, Meziane H, Marly F, Angelats C, Fernandez PA and Muscatelli F 2006 Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death. BMC Dev. Biol. 6 56

    PubMed  PubMed Central  Google Scholar 

  • Angiolini E, Fowden A, Coan P, Sandovici I, Smith P, Dean W, Burton G, Tycko B, Reik W, Sibley C and Constância M 2006 Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27 98–102

    Google Scholar 

  • Ates T, Oncul M, Dilsiz P, Topcu IC, Civas CC, Alp MI, Aklan I, Ates OZE, Yavuz Y, Yilmaz B, Sayar Atasoy N and Atasoy D 2019 Inactivation of Magel2 suppresses oxytocin neurons through synaptic excitation-inhibition imbalance. Neurobiol. Dis. 121 58–64

    CAS  PubMed  Google Scholar 

  • Barlow DP 2011 Genomic imprinting: a mammalian epigenetic discovery model. Annu. Rev. Genet. 45 379–403

    CAS  PubMed  Google Scholar 

  • Barlow DP, Stöger R, Herrmann BG, Saito K and Schweifer N 1991 The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349 84–87

    CAS  PubMed  Google Scholar 

  • Bartolomei MS and Tilghman SM 1999 Genomic imprinting in mammals. Annu. Rev. Genet. 31 493–525

    Google Scholar 

  • Bartolomei MS, Zemel S and Tilghman SM 1991 Parental imprinting of the mouse H19 gene. Nature 351 153–155

    CAS  PubMed  Google Scholar 

  • Barton SC, Ferguson-Smith AC, Fundele R and Surani MA 1991 Influence of paternally imprinted genes on development. Development 113 679–87

    CAS  PubMed  Google Scholar 

  • Barton SC, Surani MAH and Norris ML 1984 Role of paternal and maternal genomes in mouse development. Nature 311 374–376

    CAS  PubMed  Google Scholar 

  • Bista P, Cerina M, Ehling P, Leist M, Pape HC, Meuth SG and Budde T 2015 The role of two-pore-domain background K+(K2P) channels in the thalamus. Pflugers Arch. Eur. J. Physiol. 467 895–905

    CAS  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS and Bollman B, Bestor TH 2001 Dnmt3L and the establishment of maternal genomic imprints. Science 294 2536–2539

  • Bourque DK, Avila L, Peñaherrera M, Von Dadelszen P and Robinson WP 2010 Decreased placental methylation at the H19/IGF2 imprinting control region is associated with normotensive intrauterine growth restriction but not preeclampsia. Placenta 31 197–202

    CAS  PubMed  Google Scholar 

  • Brambilla R, Gnesutta N, Minichiello L, Klein R, Sturani E, White G, Chapman PF, Roylance AJ, Herron CE, Grant SGN, Ramsey M, Wolfer DP, Lipp HP, Cestari V and Rossi-Arnaud C 1997 A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390 281–286

    CAS  PubMed  Google Scholar 

  • Broad KD, Curley JP, Keverne EB (2009) Increased apoptosis during neonatal brain development underlies the adult behavorial deficits seen in mice lacking a functional paternally expressed gene 3 (Peg3). Dev. Neurobiol. 69 314–325

    CAS  PubMed  Google Scholar 

  • Brown SW and Nur U 1964 Heterochromatic chromosomes in the coccids. Science (80-) 145 130–136

  • Carr MS, Yevtodiyenko A, Schmidt CL and Schmidt JV 2007 Allele-specific histone modifications regulate expression of the Dlk1-Gtl2 imprinted domain. Genomics 89 280–290

    CAS  PubMed  Google Scholar 

  • Carter RC, Chen J, Li Q, Deyssenroth M, Dodge NC, Wainwright HC, Molteno CD, Meintjes EM, Jacobson JL and Jacobson SW 2018 Alcohol-related alterations in placental imprinted gene expression in humans mediate effects of prenatal alcohol exposure on postnatal growth. Alcohol. Clin. Exp. Res. 42 1431–1443

    CAS  Google Scholar 

  • Cassidy FC and Charalambous M 2018 Genomic imprinting, growth and maternal–fetal interactions. J. Exp. Biol. 221 jeb164517

  • Cattanach BM and Kirk M 1985 Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315 496–498

    CAS  PubMed  Google Scholar 

  • Cerrato F, Sparago A, Di Matteo I, Zou X, Dean W, Sasaki H, Smith P, Genesio R, Bruggemann M, Reik W and Riccio A 2005 The two-domain hypothesis in Beckwith-Wiedemann syndrome: Autonomous imprinting of the telomeric domain of the distal chromosome 7 cluster. Hum. Mol. Genet. 14 503–511

    CAS  PubMed  Google Scholar 

  • Charalambous M, Cowley M, Geoghegan F, Smith FM, Radford EJ, Marlow BP, Graham CF, Hurst LD and Ward A 2010 Maternally-inherited Grb10 reduces placental size and efficiency. Dev. Biol. 337 1–8

    CAS  PubMed  Google Scholar 

  • Chen M, Berger A, Kablan A, Zhang J, Gavrilova O and Weinstein LS 2012 Gsα deficiency in the paraventricular nucleus of the hypothalamus partially contributes to obesity associated with Gsα mutations. Endocrinology 153 4256–4265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Gavrilova O, Liu J, Xie T, Deng C, Nguyen AT, Nackers LM, Lorenzo J, Shen L and Weinstein LS 2005 Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proc. Natl. Acad. Sci. 102 7386–7391

    CAS  PubMed  Google Scholar 

  • Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C and Hawkes R 2011 Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev. 6 25

    PubMed  PubMed Central  Google Scholar 

  • Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E and Chen T 2009 KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461 415–418

    CAS  PubMed  Google Scholar 

  • Cleaton MAM, Dent CL, Howard M, Corish JA, Gutteridge I, Sovio U, Gaccioli F, Takahashi N, Bauer SR, Charnock-Jones DS, Powell TL, Smith GCS, Ferguson-Smith AC and Charalambous M 2016 Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat. Genet. 48 1473–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Constancia M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G, Dean W, Ferguson-Smith A, Sibley CP, Reik W and Fowden A 2005 Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc. Natl. Acad. Sci. 102 19219–19224

    CAS  PubMed  Google Scholar 

  • Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C and Reik W 2002 Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417 945–948

    PubMed  Google Scholar 

  • Cowley M, Garfield AS, Madon-Simon M, Charalambous M, Clarkson RW, Smalley MJ, Kendrick H, Isles AR, Parry AJ, Carney S, Oakey RJ, Heisler LK, Moorwood K, Wolf JB and Ward A 2014 Developmental programming mediated by complementary roles of imprinted Grb10 in mother and pup. Ed. NH Barton. PLoS Biol. 12 e1001799

    Google Scholar 

  • Crouse HV 1960 The controlling element in sex chromosome behavior in sciara. Genetics 45 1429–1443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curley JP, Pinnock SB, Dickson SL, Thresher R, Miyoshi N, Surani MA and Keverne EB 2005 Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene Peg3. FASEB J. 19 1302–1304

    CAS  PubMed  Google Scholar 

  • D’ISA, Clapcote SJ, Voikar V, Wolfer DP, Giese KP and Brambilla RFS 2011 Mice lacking Ras- GRF1 show contextual fearconditioning but not spatial memoryimpairments: convergent evidence from two independently generated mouse mutant lines. Front. Behav. Neurosci. 6 78

  • Darcy MJ, Trouche S, Jin SX and Feig LA 2014 Age-dependent role for Ras-GRF1 in the late stages of adult neurogenesis in the dentate gyrus. Hippocampus 24 315–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dechiara TM, Robertson EJ and Efstratiadis A 1991 Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64 849–859

    CAS  PubMed  Google Scholar 

  • Deng Y, Wu LMN, Bai S, Zhao C, Wang H, Wang J, Xu L, Sakabe M, Zhou W, Xin M and Lu QR 2017 A reciprocal regulatory loop between TAZ/YAP and G-protein Gas regulates Schwann cell proliferation and myelination. Nat. Commun. 8 15161

    PubMed  PubMed Central  Google Scholar 

  • Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P and Francke U 2008 SnoRNA Snord116 (Pwcr1/MBll-85) deletion causes growth deficiency and hyperphagia in mice Ed. S Akbarian. PLoS ONE 3 e1709

  • Drake NM, Park YJ, Shirali AS, Cleland TA and Soloway PD 2009 Imprint switch mutations at Rasgrf1 support conflict hypothesis of imprinting and define a growth control mechanism upstream of IGF1. Mamm. Genome 20 654–663

    PubMed  PubMed Central  Google Scholar 

  • Duker AL, Ballif BC, Bawle E V, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, Rosenfeld JA, Lamb AN and Sahoo T 2010 Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur. J. Hum. Genet. 18 1196–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards CA, Mungall AJ, Matthews L, Ryder E, Gray DJ, Pask AJ, Shaw G, Graves JAM, Rogers J, Dunham I, et al. 2008 The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol. 6 1292–1305

    CAS  Google Scholar 

  • Falix FA, Tjon-A-Loi MRS, Gaemers IC, Aronson DC and Lamers WH 2013 DLK1 Protein expression during mouse development provides new insights into its function. Isrn. Dev. Biol. 2013 1–10

    Google Scholar 

  • Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV and Surani MA 1991 Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351 667–670

    CAS  PubMed  Google Scholar 

  • Ferrón SR, Charalambous M, Radford E, Mcewen K, Wildner H, Hind E, Morante-Redolat JM, Laborda J, Guillemot F, Bauer SR, Fariñas I and Ferguson-Smith AC 2011 Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475 381–387

    PubMed  PubMed Central  Google Scholar 

  • Ferrón SR, Radford EJ, Domingo-Muelas A, Kleine I, Ramme A, Gray D, Sandovici I, Constancia M, Ward A, Menheniott TR and Ferguson-Smith AC 2015 Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis. Nat. Commun. 6 8265

    PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick GV, Soloway PD and Higgins MJ 2002 Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32 426–431

    CAS  PubMed  Google Scholar 

  • Fowden AL, Coan PM, Angiolini E, Burton GJ and Constancia M 2011 Imprinted genes and the epigenetic regulation of placental phenotype. Prog. Biophys. Mol. Biol. 106 281–288

    CAS  PubMed  Google Scholar 

  • Frey WD, Sharma K, Cain TL, Nishimori K, Teruyama R and Kim J 2018 Oxytocin receptor is regulated by Peg3 Ed. O El-Maarri. PLoS ONE 13 1–12

  • Furutachi S, Matsumoto A, Nakayama KI and Gotoh Y 2013 P57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. Embo J. 32 970–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabory A, Ripoche M-A, Le Digarcher A, Watrin F, Ziyyat A, Forne T, Jammes H, Ainscough JFX, Surani MA, Journot L and Dandolo L 2009 H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136 3413–3421

    CAS  PubMed  Google Scholar 

  • Gao WL, Liu M, Yang Y, Yang H, Liao Q, Bai Y, Li YX, Li D, Peng C and Wang YL 2012 The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol. 9 1002–1010

    CAS  PubMed  Google Scholar 

  • García-Gutiérrez MS, Navarrete F, Laborda J and Manzanares J 2018 Deletion of Dlk1 increases the vulnerability to developing anxiety-like behaviors and ethanol consumption in mice. Biochem. Pharmacol. 158 37–44

    PubMed  Google Scholar 

  • Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, Baker S, Xia J, Dalley JW, Hurst LD, Wilkinson LS, Isles AR and Ward A 2011 Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 469 534–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giese KP, Friedman E, Telliez JB, Fedorov NB, Wines M, Feig LA and Silva AJ 2001 Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology 41 791–800

    CAS  PubMed  Google Scholar 

  • Gómez C, Jimeno D, Fernández-Medarde A, García-Navas R, Calzada N and Santos E 2017 Ras-GRF2 regulates nestin-positive stem cell density and onset of differentiation during adult neurogenesis in the mouse dentate gyrus. Mol. Cell Neurosci. 85 127–147

    PubMed  Google Scholar 

  • Green BB, Kappil M, Lambertini L, Armstrong DA, Guerin DJ, Sharp AJ, Lester BM, Chen J and Marsit CJ 2015 Expression of imprinted genes in placenta is associated with infant neurobehavioral development. Epigenetics 10 834–841

    PubMed  PubMed Central  Google Scholar 

  • Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK, Griffith EC, Waldon Z, Maehr R, Ploegh HL, Chowdhury S, Worley PF, Steen J and Greenberg ME 2010 The angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140 704–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D and Dulac C 2010 High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329 643–648

  • Guo J, He H, Liu H, Liu Q, Zhang L, Liu B, Sugimoto K and Wu Q 2016 Aquaporin-1, a new maternally expressed gene, regulates placental development in the mouse. Biol. Reprod. 95 40–40

    PubMed  Google Scholar 

  • Hamada H, Okae H, Toh H, Chiba H, Hiura H, Shirane K, Sato T, Suyama M, Yaegashi N, Sasaki H and Arima T 2016 Allele-specific methylome and transcriptome analysis reveals widespread imprinting in the human placenta. Am. J. Hum. Genet. 99 1045–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa K, Kawahara T, Fujiwara K, Shimpuku M, Sasaki T, Kitamura T and Yoshikawa K 2012 Necdin controls foxo1 acetylation in hypothalamic arcuate neurons to modulate the thyroid axis. J. Neurosci. 32 5562–5572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hata K, Okano M, Lei H and Li E 2002 Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129 1983–1993

    CAS  PubMed  Google Scholar 

  • Heck DH, Zhao Y, Roy S, Ledoux MS and Reiter LT 2008 Analysis of cerebellar function in Ube3a -deficient mice reveals novel genotype-specific behaviors. Hum. Mol. Genet. 17 2181–2189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraoka Y, Komine O, Nagaoka M, Bai N, Hozumi K and Tanaka K 2013 Delta-like 1 regulates Bergmann glial monolayer formation during cerebellar development. Mol. Brain 6 25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekstra EJ, Von Oerthel L, van der Linden AJA, Schellevis RD, Scheppink G, Holstege FCP, Groot-Koerkamp MJ, van der Heide LP and Smidt MP 2013 Lmx1a is an activator of Rgs4 and Grb10 and is responsible for the correct specification of rostral and medial mdDA neurons. Eur. J. Neurosci. 37 23–32

    PubMed  Google Scholar 

  • Ideraabdullah FY, Vigneau S and Bartolomei MS 2008 Genomic imprinting mechanisms in mammals. Mutat. Res. Fundam. Mol. Mech. Mutagen. 647 77–85

    CAS  Google Scholar 

  • Inoue A, Jiang L, Lu F, Suzuki T and Zhang Y 2017 Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547 419–424

    CAS  PubMed  Google Scholar 

  • Inoue K, Hirose M, Inoue H, Hatanaka Y, Honda A, Hasegawa A, Mochida K and Ogura A 2017 The rodent-specific microRNA cluster within the Sfmbt2 gene is imprinted and essential for placental development. Cell Rep. 19 949–956

    CAS  PubMed  Google Scholar 

  • Jacobs PA, Wilson CM, Sprenkle JA, Rosenshein NB and Migeon BR 1980 Mechanism of origin of complete hydatidiform moles. Nature 286 714–716

    CAS  PubMed  Google Scholar 

  • Jacobs FMJ, van der Linden AJA, Wang Y, Von Oerthel L, Sul HS, Burbach JPH and Smidt MP 2009 Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development 136 2363–2373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YH, Pan Y, Zhu L, Landa L, Yoo J, Spencer C, Lorenzo I, Brilliant M, Noebels J and Beaudet AL 2010 Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3 Ed. ATY Lau. PLoS ONE 5 e12278

  • John R and Hemberger M 2012 A placenta for life. In Reproductive BioMedicine Online Elsevier, pp. 5–11

  • John RM 2017 Imprinted genes and the regulation of placental endocrine function: Pregnancy and beyond. Placenta 56 86–90

    CAS  PubMed  Google Scholar 

  • Johnson MD, Wu X, Aithmitti N and Morrison RS 2002 Peg3/Pw1 is a mediator between p53 and Bax in DNA damage-induced neuronal death. J. Biol. Chem. 277 23000–23007

    CAS  PubMed  Google Scholar 

  • Joseph B, Andersson ER, Vlachos P, Södersten E, Liu L, Teixeira AI and Hermanson O 2009 p57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neural stem cells. Cell Death Differ. 16 1256–1265

    CAS  PubMed  Google Scholar 

  • Kaffer CR, Srivastava M, Park K, Ives E, Hsieh S, Batlle J, Grinberg A, Huang S and Pfeifer K 2000 A transcriptional insulator at the imprinted H19/Igf2 locus A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 19 1908–1919

    Google Scholar 

  • Kappil MA, Green BB, Armstrong DA, Sharp AJ, Lambertini L, Marsit CJ and Chen J 2015 Placental expression profile of imprinted genes impacts birth weight. Epigenetics 10 842–849

    PubMed  PubMed Central  Google Scholar 

  • Kelsey G, Feil R and Ptrs B 2013 New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368 20110336

    PubMed  PubMed Central  Google Scholar 

  • Keverne EB, Fundele R, Maithreyi N, Barton SC and Surani MA 1996 Genomic imprinting and the differential roles of parental genomes in brain development. Dev. Brain Res. 92 91–100

    CAS  Google Scholar 

  • Khosla S, Mendiratta G and Brahmachari V 2006 Genomic imprinting in the mealybugs. Cytogenet. Genome Res. 113 41–52

    CAS  PubMed  Google Scholar 

  • Kim J, Ekram MB, Kim H, Faisal M, Frey WD, Huang JM, Tran KN, Kim MM and Yu S 2012 Imprinting control region (ICR) of the Peg3 domain. Hum. Mol. Genet. 21 2677–2687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsley SL, Deyssenroth MA, Kelsey KT, Awad YA, Kloog I, Schwartz JD, Lambertini L, Chen J, Marsit CJ and Wellenius GA 2017 Maternal residential air pollution and placental imprinted gene expression. Environ. Int. 108 204–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll JHM, Nicholls RD, Magenis RE, Graham JM, Lalande M, Latt SA, Opitz JM and Reynolds JF 1989 Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. Med. Genet. 32 285–290

    CAS  PubMed  Google Scholar 

  • Koppes E, Himes KP and Chaillet JR 2015 Partial loss of genomic imprinting reveals important roles for Kcnq1 and Peg10 imprinted domains in placental development Ed. O El-Maarri. PLoS ONE 10 e0135202

  • Kota SK, Llères D, Bouschet T, Hirasawa R, Marchand A, Begon-Pescia C, Sanli I, Arnaud P, Journot L, Girardot M and Feil R 2014 ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1-Dio3 domain. Dev. Cell 31 19–33

    CAS  PubMed  Google Scholar 

  • Koukoura O, Sifakis S, Zaravinos A, Apostolidou S, Jones A, Hajiioannou J, Widschwendter M and Spandidos DA 2011 Hypomethylation along with increased H19 expression in placentas from pregnancies complicated with fetal growth restriction. Placenta 32 51–57

    CAS  PubMed  Google Scholar 

  • Kozlov S V, Bogenpohl JW, Howell MP, Wevrick R, Panda S, Hogenesch JB, Muglia LJ, Van Gelder RN, Herzog ED and Stewart CL 2007 The imprinted gene Magel2 regulates normal circadian output. Nat. Genet. 39 1266–1272

    CAS  PubMed  Google Scholar 

  • Kurita M, Kuwajima T, Nishimura I and Yoshikawa K 2006 Necdin downregulates Cdc2 expression to attenuate neuronal apoptosis. J. Neurosci. 26 12003–12013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwajima T, Hasegawa K and Yoshikawa K 2010 Necdin promotes tangential migration of neocortical interneurons from basal forebrain. J. Neurosci. 30 3709–3714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwako K-I 2005 Disruption of the paternal Necdin gene diminishes TrkA signaling for sensory neuron survival. J. Neurosci. 25 7090–7099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labialle S, Yang L, Ruan X, Villemain A, Schmidt J V, Hernandez A, Wiltshire T, Cermakian N and Naumova AK 2008 Coordinated diurnal regulation of genes from the Dlk1-Dio3 imprinted domain: Implications for regulation of clusters of non-paralogous genes. Hum. Mol. Genet. 17 15–26

    CAS  PubMed  Google Scholar 

  • Lambertini L, Marsit CJ, Sharma P, Maccani M, Ma Y, Hu J and Chen J 2012 Imprinted gene expression in fetal growth and development. Placenta 33 480–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lassi G, Ball ST, Maggi S, Colonna G, Nieus T, Cero C, Bartolomucci A, Peters J and Tucci V 2012 Loss of Gnas imprinting differentially affects REM/Nrem sleep and cognition in mice Ed. AC Ferguson-Smith. PLoS Genet. 8 e1002706

  • Lassi G, Priano L, Maggi S, Garcia-Garcia C, Balzani E, El-Assawy N, Pagani M, Tinarelli F, Giardino D, Mauro A, Peters J, Gozzi A, Grugni G and Tucci V 2016 Deletion of the Snord116/SNORD116 alters sleep in mice and patients with Prader-Willi syndrome. Sleep 39 637–644

    PubMed  PubMed Central  Google Scholar 

  • Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P and Barlow DP 2012 Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338 1469–1472

    CAS  PubMed  Google Scholar 

  • Lee S, Walker CL, Karten B, Kuny SL, Tennese AA, O’neill MA and Wevrick R 2005 Essential role for the Prader-Willi syndrome protein Necdin in axonal outgrowth. Hum. Mol. Genet. 14 627–637

    CAS  PubMed  Google Scholar 

  • Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’ercole AJ, Wong ET, Lamantia AS and Walsh CA 2011 The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69 893–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leighton PA, Saam JR, Ingram RS, Stewart CL and Tilghman SM 1995 An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9 2079–2089

    CAS  PubMed  Google Scholar 

  • Li E, Beard C and Jaenisch R 1993 Role of DNA methylation in genomic imprinting. Nature 366 529–531

    Google Scholar 

  • Li L 1999 Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science (80- ) 284 330–334

  • Li S 2006 Distinct roles for Ras-Guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression. J. Neurosci. 26 1721–1729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Chi Y-J, Lin G-Q, Xiao L-F, Su G-L and Yang L-M 2018 LncRNA MEG3 participates in neuronal cell injury induced by subarachnoid hemorrhage via inhibiting the Pi3k/Akt pathway. Eur. Rev. Med. Pharmacol. Sci. 22 2824–2831

    CAS  PubMed  Google Scholar 

  • Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J and Ferguson-Smith AC 2003 Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 35 97–102

    CAS  PubMed  Google Scholar 

  • Linden A-M, Sandu C, Aller MI, Vekovischeva OY, Rosenberg PH, Wisden W and Korpi ER 2007 Task-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J. Pharmacol. Exp. Ther. 323 924–934

    CAS  PubMed  Google Scholar 

  • Ludwig T, Eggenschwiler J, Fisher P, D’ercole AJ, Davenport ML and Efstratiadis A 1996 Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev. Biol. 177 517–535

    CAS  PubMed  Google Scholar 

  • Luo Z, Lin C, Woodfin AR, Bartom ET, Gao X, Smith ER and Shilatifard A 2016 Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity. Genes Dev. 30 92–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mancini-Dinardo D, Steele SJS, Ingram RS and Tilghman SM 2003 A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer. Hum. Mol. Genet. 12 283–294

    CAS  PubMed  Google Scholar 

  • Martinez ME, Charalambous M, Saferali A, Fiering S, Naumova AK, St Germain D, Ferguson-Smith AC and Hernandez A 2014 Genomic imprinting variations in the mouse type 3 deiodinase gene between tissues and brain regions. Mol. Endocrinol. 28 1875–1886

    PubMed  PubMed Central  Google Scholar 

  • Matarazzo V, Caccialupi L, Schaller F, Shvarev Y, Kourdougli N, Bertoni A, Menuet C, Voituron N, Deneris E, Gaspar P, Bezin L, Durbec P, Hilaire G and Muscatelli F 2017 Necdin shapes serotonergic development and Sert activity modulating breathing in a mouse model for Prader-Willi syndrome. Elife 6 pii: e32640

  • Matsumoto A, Susaki E, Onoyama I, Nakayama K, Hoshino M and Nakayama KI 2011 Deregulation of the p57-E2F1-p53 axis results in nonobstructive hydrocephalus and cerebellar malformation in mice. Mol. Cell Biol. 31 4176–4192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews JC, Beveridge MJ, Dialynas E, Bartke A, Kilberg MS and Novak DA 1999 Placental anionic and cationic amino acid transporter expression in growth hormone overexpressing and null IGF-II or null IGF-I receptor mice. Placenta 20 639–650

    CAS  PubMed  Google Scholar 

  • Maupetit-Méhouas S, Montibus B, Nury D, Tayama C, Wassef M, Kota SK, Fogli A, Campos FC, Hata K, Feil R, Margueron R, Nakabayashi K, Court F and Arnaud P 2016 Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res. 44 621–635

    PubMed  Google Scholar 

  • Mayer W, Hemberger M, Frank HG, Grümmer R, Winterhager E, Kaufmann P and Fundele R 2000 Expression of the imprinted genes MEST/Mest in human and murine placenta suggests a role in angiogenesis. Dev. Dyn. 217 1–10

    CAS  PubMed  Google Scholar 

  • Mccole RB and Oakey RJ 2008 Unwitting hosts fall victim to imprinting. Epigenetics 3 258–260

    PubMed  PubMed Central  Google Scholar 

  • Mcewen KR and Ferguson-Smith AC 2010 Distinguishing epigenetic marks of developmental and imprinting regulation. Epigenet. Chromatin 3 1–13

    Google Scholar 

  • Mcfadden DE, Kwong LC, Yam IY and Langlois S 1993 Parental origin of triploidy in human fetuses: evidence for genomic imprinting. Hum. Genet. 92 465–9

    CAS  PubMed  Google Scholar 

  • Mcgrath J and Solter D 1984 Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37 179–183

    CAS  PubMed  Google Scholar 

  • Mercer RE, Michaelson SD, Chee MJS, Atallah TA, Wevrick R and Colmers WF 2013 Magel2 Is Required for Leptin-Mediated Depolarization of Pomc Neurons in the Hypothalamic Arcuate Nucleus in Mice Ed. GSH Yeo. PLoS Genet. 9 e1003207

  • Meziane H, Schaller F, Bauer S, Villard C, Matarazzo V, Riet F, Guillon G, Lafitte D, Desarmenien MG, Tauber M and Muscatelli F 2015 An early postnatal oxytocin treatment prevents social and learning deficits in adult mice deficient for Magel2, a gene involved in Prader-Willi syndrome and autism. Biol. Psychiatry 78 85–94

    CAS  PubMed  Google Scholar 

  • Miller NLG, Wevrick R and Mellon PL 2009 Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum. Mol. Genet. 18 248–260

    CAS  PubMed  Google Scholar 

  • Minamide R, Fujiwara K, Hasegawa K and Yoshikawa K 2014 Antagonistic Interplay between Necdin and Bmi1 controls proliferation of neural precursor cells in the embryonic mouse neocortex Ed. DL Silver. PLoS ONE 9 e84460

  • Miri K, Latham K, Panning B, Zhong Z, Andersen A and Varmuza S 2013 The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development. Development 140 4480–4489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A and Jana NR 2008 Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman mental retardation syndrome. Cell Mol. Life Sci. 65 656–666

    CAS  PubMed  Google Scholar 

  • Mohammad F, Mondal T, Guseva N, Pandey GK and Kanduri C 2010 Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137 2493–2499

    CAS  PubMed  Google Scholar 

  • Müller D, Cherukuri P, Henningfeld K, Poh CH, Wittler L, Grote P, Schlüter O, Schmidt J, Laborda J, Bauer SR, Brownstone RM and Marquardt T 2014 Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution. Science 343 1264–1266

  • Muscatelli F 2000 Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum. Mol. Genet. 9 3101–3110

    CAS  PubMed  Google Scholar 

  • Musset B, Meuth SG, Liu GX, Derst C, Wegner S, Pape HC, Budde T, Preisig-Müller R and Daut J 2006 Effects of divalent cations and spermine on the K+ channel Task-3 and on the outward current in thalamic neurons. J. Physiol. 572 639–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R and Fraser P 2008 The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322 1717–1720

  • Noor A, Dupuis L, Mittal K, Lionel AC, Marshall CR, Scherer SW, Stockley T, Vincent JB and Mendoza-Londono R, Stavropoulos DJ 2015 15q11.2 duplication encompassing only the UBE3A gene is associated with developmental delay and neuropsychiatric phenotypes. Hum. Mutat. 36 689–693

    CAS  PubMed  Google Scholar 

  • Oncul M, Dilsiz P, Ates OZE, Ates T, Aklan I, Celik E, Sayar Atasoy N and Atasoy D 2018 Impaired melanocortin pathway function in Prader–Willi syndrome gene-Magel2 deficient mice. Hum. Mol. Genet. 27 3129–3136

    CAS  PubMed  Google Scholar 

  • Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T and Ishino F 2006 Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat. Genet. 38 101–106

    CAS  PubMed  Google Scholar 

  • Ouchi Y, Banno Y, Shimizu Y, Ando S, Hasegawa H, Adachi K and Iwamoto T 2013 Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2. J. Neurosci. 33 9408–9419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Õunap K 2016 Silver-Russell syndrome and beckwith-wiedemann syndrome: opposite phenotypes with heterogeneous molecular etiology. Mol. Syndromol. 7 110–121

    PubMed  PubMed Central  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D and Kanduri C 2008 Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32 232–246

    CAS  PubMed  Google Scholar 

  • Pang DSJ, Robledo CJ, Carr DR, Gent TC, Vyssotski AL, Caley A, Zecharia AY, Wisden W, Brickley SG and Franks NP 2009 An unexpected role for Task-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc. Natl. Acad. Sci. USA 106 17546–17551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pannetier M, Julien E, Schotta G, Tardat M, Sardet C, Jenuwein T and Feil R 2008 PR-SET7 and SUV4-20H regulate H4 lysine-20 methylation at imprinting control regions in the mouse. Embo Rep. 9 998–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel AJ and Lazdunski M 2004 The 2P-domain K+channels: Role in apoptosis and tumorigenesis. Pflugers Arch. Eur. J. Physiol. 448 261–273

    CAS  Google Scholar 

  • Peeters RP, Hernandez A, Ng L, Ma M, Sharlin DS, Pandey M, Simonds WF, St Germain DL and Forrest D 2013 Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1. Endocrinology 154 550–561

    CAS  PubMed  Google Scholar 

  • Peña CJ, Neugut YD, Calarco CA and Champagne FA 2014 Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring. Eur. J. Neurosci. 39 946–956

    PubMed  Google Scholar 

  • Perez JD, Rubinstein ND and Dulac C 2016 New perspectives on genomic imprinting, an essential and multifaceted mode of epigenetic control in the developing and adult brain. Annu. Rev. Neurosci. 39 347–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez JD, Rubinstein ND, Fernandez DE, Santoro SW, Needleman LA, Ho-Shing O, Choi JJ, Zirlinger M, Chen SK, Liu JS and Dulac C 2015 Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain. Elife 4 41

    Google Scholar 

  • Plasschaert RN and Bartolomei MS 2015 Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proc. Natl. Acad. Sci. 112 6841–6847

    CAS  PubMed  Google Scholar 

  • Powell WT, Coulson RL, Crary FK, Wong SS, Ach RA, Tsang P, Yamada NA, Yasui DH and Lasalle JM 2013 A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum. Mol. Genet. 22 4318–4328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prats-Puig A, Carreras-Badosa G, Bassols J, Cavelier P, Magret A, Sabench C, DE Zegher F, Ibáñez L, Feil R and López-Bermejo A 2017 The placental imprinted DLK1-DIO3 domain: a new link to prenatal and postnatal growth in humans. Am. J. Obstet. Gynecol. 217 350.e1–350.e13

    CAS  Google Scholar 

  • Pravdivyi I, Ballanyi K, Colmers WF and Wevrick R 2015 Progressive postnatal decline in leptin sensitivity of arcuate hypothalamic neurons in the Magel2-null mouse model of Prader-Willi syndrome. Hum. Mol. Genet. 24 4276–4283

    CAS  PubMed  Google Scholar 

  • Qi Y, Purtell L, Fu M, Lee NJ, Aepler J, Zhang L, Loh K, Enriquez RF, Baldock PA, Zolotukhin S, Campbell LV and Herzog H 2016 Snord116 is critical in the regulation of food intake and body weight. Sci. Rep. 6 18614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rai A and Cross JC 2014 Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev. Biol. 387 131–141

    CAS  PubMed  Google Scholar 

  • Ratajczak MZ, Kucia M, Liu R, Shin DM, Bryndza E, Masternak MM, Tarnowski M, Ratajczak J and Bartke A 2011 RasGrf1 Genomic imprinting, VSELs, and aging. Aging (Albany NY) 3 692–697

    CAS  Google Scholar 

  • Reik W, Collick A, Norris ML, Barton SC and Surani MA 1987 Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328 248–251

    CAS  PubMed  Google Scholar 

  • Sanz LA, Chamberlain S, Sabourin JC, Henckel A, Magnuson T, Hugnot JP, Feil R and Arnaud P 2008 A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10. Embo J. 27 2523–2532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sapienza C, Peterson AC, Rossant J and Balling R 1987 Degree of methylation of transgenes is dependent on gamete of origin. Nature 328 251–254

    CAS  PubMed  Google Scholar 

  • Sato M and Stryker MP 2010 Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc Natl Acad Sci 107 5611–5616

    CAS  PubMed  Google Scholar 

  • Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P and Muscatelli F 2010 A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum. Mol. Genet. 19 4895–4905

    CAS  PubMed  Google Scholar 

  • Seisenberger S, Peat JR, Hore TA, Santos F, Dean W and Reik W 2013 Reprogramming DNA methylation in the mammalian life cycle: Building and breaking epigenetic barriers. Philos. Trans. R. Soc. B Biol. Sci. 368 20110330

  • Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, Hino T, Suzuki-Migishima R, Kohda T, Ogura A, Ogata T, Yokoyama M, Kaneko-Ishino T and Ishino F 2008 Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat. Genet. 40 243–248

    CAS  PubMed  Google Scholar 

  • Shi SQ, Bichell TJ, Ihrie RA and Johnson CH 2015 Ube3a imprinting impairs circadian robustness in Angelman syndrome models. Curr. Biol. 25 537–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sibley CP, Coan PM, Ferguson-Smith AC, Dean W, Hughes J, Smith P, Reik W, Burton GJ, Fowden AL and Constancia M 2004 Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc. Natl. Acad. Sci. 101 8204–8208

    CAS  PubMed  Google Scholar 

  • Smith SEP, Zhou YD, Zhang G, Jin Z, Stoppel DC and Anderson MP 2011 Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci. Transl. Med. 3 103ra97

  • Spence JE, Perciaccante RG, Greig GM, Willard HF, Ledbetter DH, Hejtmancik JF, Pollack MS, O’brien WE and Beaudet AL 1988 Uniparental disomy as a mechanism for human genetic disease. Am. J. Hum. Genet. 42 217–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart KR, Veselovska L and Kelsey G 2016 Establishment and functions of DNA methylation in the germline. Epigenomics 8 1399–1413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stohn JP, Martinez ME, Zafer M, López-Espíndola D, Keyes LM and Hernandez A 2018 Increased aggression and lack of maternal behavior in Dio3-deficient mice are associated with abnormalities in oxytocin and vasopressin systems. Genes Brain Behav. 17 23–35

    CAS  Google Scholar 

  • Strakovsky RS and Schantz SL 2018 Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta. Environ. Epigenet. 4 dvy022

  • Sun J, Zhu G, Liu Y, Standley S, Ji A, Tunuguntla R, Wang Y, Claus C, Luo Y, Baudry M and Bi X 2015 UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis. Cell Rep. 12 449–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surani MAH, Barton SC and Norris ML 1984 Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308 548–550

    CAS  PubMed  Google Scholar 

  • Szabo PE, Tang SE, Silva FJ, Tsark WMK and Mann JR 2004 Role of Ctcf binding sites in the Igf2/H19 imprinting control region. Mol. Cell Biol. 24 4791–4800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K 2000 p57Kip2 regulates the proper development of labyrinthine and spongiotrophoblasts. Mol. Hum. Reprod. 6 1019–1025

    CAS  PubMed  Google Scholar 

  • Tennese AA, Gee CB and Wevrick R 2008 Loss of the Prader-Willi syndrome protein Necdin causes defective migration, axonal outgrowth, and survival of embryonic sympathetic neurons. Dev. Dyn. 237 1935–1943

    PubMed  Google Scholar 

  • Thakur N, Tiwari VK, Thomassin H, Pandey RR, Kanduri M, Gondor A, Grange T, Ohlsson R and Kanduri C 2004 An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol. Cell Biol. 24 7855–7862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thamban T, Sowpati DT, Pai V, Nithianandam V, Abe T, Shioi G, Mishra RK and Khosla S 2019 The putative Neuronatin imprint control region is an enhancer that also regulates the Blcap gene. Epigenomics 11 251–66

    CAS  PubMed  Google Scholar 

  • Thorvaldsen JL, Duran KL and Bartolomei MS 1998 Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12 3693–3702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tunster SJ, Creeth HDJ and John RM 2016 The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources. Dev. Biol. 409 251–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tunster SJ, Tycko B and John RM 2010 The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol. Cell Biol. 30 295–306

    CAS  PubMed  Google Scholar 

  • Tycko B 1994 Genomic imprinting: mechanism and role in human pathology. Am. J. Pathol. 144 431–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valante T, Junyent F and Auladell C 2005 Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: Differential phenotype of the zac1-expressing cells during development. In Developmental Dynamics pp. 667–679

  • Varrault A, Dantec C, Le Digarcher A, Chotard L, Bilanges B, Parrinello H, Dubois E, Rialle S, Severac D, Bouschet T and Journot L 2017 Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network. Nucleic Acids Res. 45 10466–10480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P and Journot L 2006 Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev. Cell 11 711–22

    CAS  PubMed  Google Scholar 

  • Villanueva C, Jacquier S and De Roux N 2012 DLK1 is a somato-dendritic protein expressed in hypothalamic arginine-vasopressin and oxytocin neurons Ed. EE Schmidt. PLoS ONE 7 e36134

  • Voss R, Ben-Simon E, Avital A, Godfrey S, Zlotogora J, Dagan J, Tikochinski Y and Hillel J 1989 Isodisomy of chromosome 7 in a patient with cystic fibrosis: could uniparental disomy be common in humans? Am J Hum Genet 45 373–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagschal A, Sutherland HG, Woodfine K, Henckel A, Chebli K, Schulz R, Oakey RJ, Bickmore WA and Feil R 2008 G9a Histone methyltransferase contributes to imprinting in the mouse placenta. Mol. Cell Biol. 28 1104–1113

    CAS  PubMed  Google Scholar 

  • Wallace ML, Burette AC, Weinberg RJ and Philpot BD 2012 Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects. Neuron 74 793–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X and Liu J 2014 Programming and inheritance of parental DNA methylomes in mammals. Cell 157 979–991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasson JA, Simon AK, Myrick DA, Wolf G, Driscoll S, Pfaff SL, Macfarlan TS and Katz DJ 2016 Maternally provided LSD1/KDM1A enables the maternal-to-zygotic transition and prevents defects that manifest postnatally. Elife 5 1–25

    Google Scholar 

  • Watanabe T, Tomizawa SI, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, Iida N, Hoki Y, Murphy PJ, Toyoda A, et al. 2011 Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332 848–852

  • Weaver JR and Bartolomei MS 2014 Chromatin regulators of genomic imprinting. Biochim. Biophys. Acta 1839 169–177

    CAS  PubMed  Google Scholar 

  • Wijesuriya TM, De Ceuninck L, Masschaele D, Sanderson MR, Carias KV, Tavernier J and Wevrick R 2017 The Prader-Willi syndrome proteins MAGEL2 and Necdin regulate leptin receptor cell surface abundance through ubiquitination pathways. Hum. Mol. Genet. 26 4215–4230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson CM, Turner MD, Ball ST, Nottingham WT, Glenister P, Fray M, Tymowska-Lalanne Z, Plagge A, Powles-Glover N, Kelsey G, Maconochie M and Peters J 2006 Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat. Genet. 38 350–355

    CAS  PubMed  Google Scholar 

  • Wutz A and Barlow PD 1998 Imprinting of the mouse Igf2r gene depends on an intronic CpG island. Mol. Cell Endocrinol. 140 9–14

    CAS  PubMed  Google Scholar 

  • Yamasaki-Ishizaki Y, Kayashima T, Mapendano CK, Soejima H, Ohta T, Masuzaki H, Kinoshita A, Urano T, Yoshiura K-I, Matsumoto N, Ishimaru T, Mukai T, Niikawa N and Kishino T 2007 Role of DNA methylation and histone H3 lysine 27 methylation in tissue-specific imprinting of mouse Grb10. Mol. Cell Biol. 27 732–742

    CAS  PubMed  Google Scholar 

  • Yan H, Rao J, Yuan J, Gao L, Huang W, Zhao L and Ren J 2017 Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis. 8 3211

    PubMed  PubMed Central  Google Scholar 

  • Yashiro K, Riday TT, Condon KH, Roberts AC, Bernardo DR, Prakash R, Weinberg RJ, Ehlers MD and Philpot BD 2009 Ube3a is required for experience-dependent maturation of the neocortex. Nat. Neurosci. 12 777–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X and Carew TJ 2010 Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 68 340–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ying W, Li FJ, Wei SW and Li WL 2010 Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. J. Genet. 89 213–216

    PubMed  Google Scholar 

  • Yoon B, Herman H, Hu B, Park YJ, Lindroth A, Bell A, West AG, Chang Y, Stablewski A, Piel JC, Loukinov DI, Lobanenkov VV and Soloway PD 2005 Rasgrf1 imprinting is regulated by a Ctcf-dependent methylation-sensitive enhancer blocker. Mol. Cell Biol. 25 11184–11190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon BJ, Herman H, Sikora A, Smith LT, Plass C and Soloway PD 2002 Regulation of DNA methylation of Rasgrf1. Nat. Genet. 30 92–96

    CAS  PubMed  Google Scholar 

  • Zhang Q, Bouma GJ, Mcclellan K and Tobet S 2012 Hypothalamic expression of snoRNA Snord116 is consistent with a link to the hyperphagia and obesity symptoms of Prader-Willi syndrome. Int. J. Dev. Neurosci. 30 479–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Termanis A, Özkan B, Bao XX, Culley J, De Lima Alves F, Rappsilber J, Ramsahoye B and Stancheva I 2016 G9a/GLP complex maintains imprinted DNA methylation in embryonic stem cells. Cell Rep. 15 77–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C and Barlow DP 2001 Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol. Cell Biol. 21 4188–4196

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

TT and VA are recipient of Senior Research Fellowships from the Department of Biotechnology and CSIR, India, respectively, toward the pursuit of a PhD degree of the Manipal University, Manipal. The work on genomic imprinting in SK laboratory was initially supported by a grant from The Wellcome Trust. Research in SK laboratory is also supported by grants from DBT, SERB, DST and CDFD. Figure 2 was created using Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Khosla.

Additional information

This artice is part of the Topical Collection: Chromatin Biology and Epigenetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thamban, T., Agarwaal, V. & Khosla, S. Role of genomic imprinting in mammalian development. J Biosci 45, 20 (2020). https://doi.org/10.1007/s12038-019-9984-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9984-1

Keywords

Navigation