Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Development of Computational Models of Emotions for Autonomous Agents: A Review

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

It has been recognized that human behavior is an observable consequence of the interactions between cognitive and affective functions. This perception has motivated the study of human emotions in disciplines such as psychology and neuroscience and led to the formulation of a number of theories and models that attempt to explain the mechanisms underlying this human process. In the field of artificial intelligence, these theoretical findings have posed a series of challenges in the development of autonomous agents (AAs) capable of exhibiting very believable and human-like behaviors. One of these challenges is the design and implementation of computational models of emotions (CMEs), which are software systems designed to provide AAs with proper mechanisms for the processing of emotional information, elicitation of synthetic emotions, and generation of emotional behaviors. In this paper, we review this type of computational model from the perspective of their development. Particularly, we investigate five design aspects that influence their development process: theoretical foundations, operating cycle, interaction between cognition and emotion, architectural design, and role in cognitive agent architectures. We provide discussions about key issues and challenges in the development of CMEs and suggest research that may lead to more robust and flexible designs for this type of computational model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Damasio AR. Descartes’ error: emotion, reason, and the human brain. 1st ed. New York: Putnam Grosset Books; 1994.

  2. Phepls EA. Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol. 2006;57:27–53.

    Article  Google Scholar 

  3. Clore GL, Palmer J. Affective guidance of intelligent agents: how emotion controls cognition. Cogn Syst Res. 2009;10(1):21–30.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Loewenstein G, Lerner JS. The role of affect in decision making. In: Handbook of affective sciences. New York, NY: Oxford University Press; 2003. p. 619–42.

  5. Gros C. Cognition and emotion: perspectives of a closing gap. Cogn Comput. 2010;2(2):78–85.

    Article  Google Scholar 

  6. Scherer KR. Vocal communication of emotion: a review of research paradigms. Speech Commun. 2003;40(1–2):227–256.

    Article  Google Scholar 

  7. Planalp S. Communicating emotion in everyday life: cues, channels, and processes. In: Andersen PA, Guerrero LK, editors. Handbook of communication and emotion. San Diego: Academic Press; 1996. p. 29–48.

    Chapter  Google Scholar 

  8. Frijda NH. The emotions. Cambridge: Cambridge University Press; 1986.

    Google Scholar 

  9. Panksepp J. Affective neuroscience: the foundations of human and animal emotions. New York: Oxford University Press; 1998.

    Google Scholar 

  10. Trappl R, Petta P, Payr S, editors. Emotions in humans and artifacts. Cambridge: MIT Press; 2003.

  11. Barrett LF, Mesquita B, Ochsner KN, Gross JJ. The experience of emotion. Annu Rev Psychol. 2007;58(1):373–403.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ortony A, Clore GL, Collins A. The cognitive structure of emotions. Cambridge: Cambridge University Press; 1990.

    Google Scholar 

  13. Scherer KR. Appraisal considered as a process of multi-level sequential checking. In: Scherer KR, Schorr A, Johnstone T, editors. Appraisal processes in emotion: theory, methods, research. New York: Oxford University Press; 2001. p. 92–120.

    Google Scholar 

  14. LeDoux JE. Cognitive–emotional interactions in the brain. Cogn Emot. 1989;3(4):267–289.

    Article  Google Scholar 

  15. Hudlicka E. Guidelines for designing computational models of emotions. Int J Synth Emot (IJSE). 2011;2(1):26–79.

    Article  Google Scholar 

  16. Marsella S, Gratch J, Petta P. Computational models of emotion. In: Scherer KR, Bänziger T, Roesch EB, editors. Blueprint for affective computing: a source book. 1st ed. Oxford: Oxford University Press; 2010.

    Google Scholar 

  17. Broekens J, Bosse T, Marsella SC. Challenges in computational modeling of affective processes. IEEE Trans Affect Comput 2013;4(3):242–245.

    Article  Google Scholar 

  18. Ziemke T, Lowe R. On the role of emotion in embodied cognitive architectures: from organisms to robots. Cogn Comput. 2009;1(1):104–117.

    Article  Google Scholar 

  19. Tao J, Tan T. Affective computing: a review. In: Tao J, Tan T, Picard R, editors. Proceedings of the international conference on affective computing and intelligent interaction (ACII 2005). Berlin: Springer; 2005. p. 981–95.

  20. Fellous JM, Arbib MA, editors. Who needs emotions?: the brain meets the robot. Oxford: Oxford University Press; 2005.

  21. Martínez-Miranda J, Aldea A. Emotions in human and artificial intelligence. Comput Hum Behav. 2005;21(2):323 – 341.

    Article  Google Scholar 

  22. Picard RW. Affective computing. Cambridge, MA: MIT Press; 1997.

    Google Scholar 

  23. Rumbell T, Barnden J, Denham S, Wennekers T. Emotions in autonomous agents: comparative analysis of mechanisms and functions. Auton Agents Multi-Agent Syst. 2012;25(1):1–45.

    Article  Google Scholar 

  24. Samsonovich AV. Emotional biologically inspired cognitive architecture. Biol Inspir Cogn Archit. 2013;6(0):109–125.

    Google Scholar 

  25. Lin J, Spraragen M, Zyda M. Computational models of emotion and cognition. Adv Cogn Syst. 2012;2:59–76.

    Google Scholar 

  26. Scheutz M. Useful roles of emotions in artificial agents: a case study from artificial life. In: AAAI’04: Proceedings of the 19th national conference on Artifical intelligence. AAAI Press; 2004. p. 42–7.

  27. Plaut DC. Methodologies for the computer modeling of human cognitive processes. In: Boller F, Grafman J, Rizzotti G, editors. Handbook of Neuropsychology. 2nd ed. Amsterdam: Elsevier; 2000.

  28. Rodríguez LF, Ramos F, García G. Computational modeling of brain processes for agent architectures: issues and implications. In: Hu B, Liu J, Chen L, Zhong N, editors. Proceedings of the international conference on brain informatics (BI-2011). Lanzhou: Springer; 2011.

  29. Ortony A. On making believable emotional agents believable. In: Trappl R, Petta P, Payr S, editors. Emotions in humans and artifacts. Cambridge, MA.: MIT Press; 2003. p. 189–212.

    Google Scholar 

  30. Scherer KR. Emotion and emotional competence: conceptual and theoretical issues for modelling agents. In: Scherer KR, Bänziger T, Roesch EB, editors. Blueprint for affective computing: a source book. Oxford: Oxford University Press; 2010.

    Google Scholar 

  31. Davidson RJ, Sherer KR, Goldsmith HH, editors. Handbook of affective sciences. Oxford: Oxford University Press; 2009.

  32. LeDoux JE. The emotional brain: the mysterious underpinnings of emotional life. New York City: Simon and Schuster; 1993.

  33. Lane RD, Nadel L, editors. Cognitive neuroscience of emotion. Oxford: Oxford University Press; 2002.

  34. Arbib MA, Fellous JM. Emotions: from brain to robot. Trends Cogn Sci. 2004;8(12):554 – 561.

    Article  PubMed  Google Scholar 

  35. Fellous JM. From human emotions to robot emotions. In: 2004 AAAI Spring Symposium. Architectures for modeling emotion: cross-disciplinary foundations. American Association for Artificial Intelligence; 2004. p. 37–47.

  36. Becker-Asano C, Wachsmuth I. Affective computing with primary and secondary emotions in a virtual human. Auton Agents Multi-Agent Syst. 2010;20(1):32–49.

    Article  Google Scholar 

  37. Velásquez JD. Modeling emotions and other motivations in synthetic agents. In: Proceedings of the 14th national conference on artificial intelligence and ninth conference on innovative applications of artificial intelligence. Providence, Rhode Island: AAAI Press; 1997. p. 10–15.

  38. Marsella SC, Gratch J. EMA: a process model of appraisal dynamics. Cogn Syst Res. 2009;10(1):70–90

    Article  Google Scholar 

  39. Gebhard P. ALMA: a layered model of affect. In: Proceedings of the 4th international joint conference on autonomous agents and multiagent systems; 2005. p. 29–36.

  40. Cambria E, Livingstone A, Hussain A. The hourglass of emotions. In: Esposito A, Esposito AM, Vinciarelli A, Hoffmann R, Müller VC, editors. Cognitive behavioural systems. vol. 7403 of lecture notes in computer science. Berlin: Springer; 2012. p. 144–157.

    Google Scholar 

  41. Frijda NH, Kuipers P, ter Schure E. Relations among emotion, appraisal, and emotional action readiness. J Pers Soc Psychol. 1989;57(2):212 – 228.

    Article  Google Scholar 

  42. Roseman IJ, Spindel MS, Jose PE. Appraisals of emotion-eliciting events: testing a theory of discrete emotions. J Pers Soc Psychol. 1990;59(5):899 – 915.

    Article  Google Scholar 

  43. Lazarus RS. Emotion and adaptation. Oxford: Oxford University Press; 1991.

    Google Scholar 

  44. Smith CA, Lazarus RS. Emotion and adaptation. In: John OP, Robins RW, Pervin LA, editors. Handbook of personality: theory and research. New York City: Guilford Press; 1990. p. 609–637.

    Google Scholar 

  45. El-Nasr MS, Yen J, Ioerger TR. FLAME–fuzzy logic adaptive model of emotions. Auton Agents Multi-Agent Syst. 2000;3(3):219–257.

    Article  Google Scholar 

  46. Bolles RC, Fanselow MS. A perceptual-defensive-recuperative model of fear and pain. Behav Brain Sci. 1980;3(2):291–301.

    Article  Google Scholar 

  47. Hudlicka E. This time with feeling: integrated model of trait and state effects on cognition and behavior. Appl Artif Intell 2002;16(7-8):611 – 641.

    Article  Google Scholar 

  48. Smith CA, Kirby LD. Toward delivering on the promise of appraisal theory. In: Scherer KR, Schorr A, Johnstone T, editors. Appraisal processes in emotion. New York: Oxford University Press; 2001.

    Google Scholar 

  49. McCrae RR, John OP. An introduction to the five-factor model and its applications. J Pers. 1992;60(2):175–215.

    Article  CAS  PubMed  Google Scholar 

  50. Mehrabian A. Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr Psychol. 1996;14(4):261–292.

    Article  Google Scholar 

  51. Ekman P. An argument for basic emotion. Cogn Emot. 1992;6(3):169–200.

    Article  Google Scholar 

  52. Marinier RP, Laird JE, Lewis RL. A computational unification of cognitive behavior and emotion. Cogn Syst Res. 2009;10(1):48 – 69.

    Article  Google Scholar 

  53. Newell A. Unified theories of cognition. Cambridge: Harvard University Press; 1990.

    Google Scholar 

  54. Marinier RP, Laird JE. Computational modeling of mood and feeling from emotion. In: Proceedings of 29th meeting of the cognitive science society; 2007. p. 461–466.

  55. Russell JA. Core affect and the psychological construction of emotion. Psychol Rev. 2003;110(1):145 – 172.

    Article  PubMed  Google Scholar 

  56. Russell JA. Emotion, core affect, and psychological construction. Cogn Emot. 2009;23(7):1259–1283.

    Article  Google Scholar 

  57. Russell JA, Barrett LF. Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. J Pers Soc Psychol. 1999;76(5):805–819.

    Article  CAS  PubMed  Google Scholar 

  58. Russell JA, Mehrabian A. Evidence for a three-factor theory of emotions. J Res Pers. 1977;11(3):273 – 294.

    Article  Google Scholar 

  59. Kuremoto T, Obayashi M, Kobayashi K, Feng LB. An improved internal model of autonomous robots by a psychological approach. Cogn Comput. 2011;3(4):501–509.

    Article  Google Scholar 

  60. Becker-Asano C, Wachsmuth I. WASABI as a case study of how misattribution of emotion can be modelled computationally. In: Scherer KR, Bänziger T, Roesch EB, editors. Blueprint for affective computing: a source book. 1st ed. Oxford: Oxford University Press; 2010.

    Google Scholar 

  61. Ekman P. Are There basic emotions? Psychol Rev. 1992;99(3):550–553.

    Article  CAS  PubMed  Google Scholar 

  62. Ekman P. Basic emotions. In: Dalgleish T, Power MJ, editors. Handbook of cognition and emotion. New Jersey: Wiley; 1999. p. 45–60.

    Google Scholar 

  63. Lewis M, Sullivan MW, Stanger C, Weiss M. Self development and self-conscious emotions. Child Dev. 1989;60(1):146–156.

    Article  CAS  PubMed  Google Scholar 

  64. Ortony A, Turner TJ. What’s basic about basic emotions? Psychol Rev. 1990;97(3):315–331.

    Article  CAS  PubMed  Google Scholar 

  65. Ekman P, Friesen WV, Ellsworth P. What emotion categories or dimensions can observers judge from facial behavior? In: Ekman P, editor. Emotion in the human face. Cambridge: Cambridge University Press; 1982. p. 39–55.

    Google Scholar 

  66. Izard CE. The face of emotion. New York, NY: Appleton-Century-Crofts; 1971.

  67. Oatley K, Johnson-laird PN. Towards a cognitive theory of emotions. Cogn Emot. 1987;1(1):29–50.

    Article  Google Scholar 

  68. Tomkins SS. Affect theory. In: Scherer KR, Ekman P, editors. Approaches to emotion. Hillsdale, NJ: Erlbaum; 1984. p. 163–195.

    Google Scholar 

  69. Damasio AR. Looking for spinoza: joy, sorrow and the feeling brain. 1st ed. Boston: Houghton Mifflin Harcourt; 2003.

  70. Minsky M. The society of mind. New York City: Simon and Schuster; 1986.

  71. Ekman P. Facial expression and emotion. Am Psychol. 1993;48(4):384–392

    Article  CAS  PubMed  Google Scholar 

  72. Pfeifer R. Artificial intelligence models of emotion. In: Hamilton V, Bower GH, Frijda NH, editors. Cognitive perspectives on emotion and motivation. vol. 44 of behavioural and social sciences. Berlin: Kluwer Academic Publishers; 1987. p. 287–320.

    Google Scholar 

  73. Rodríguez LF, Ramos F, García G. An integrative computational model of emotions. In: D’Mello S, Graesser A, editors. Proceedings of the 4th international conference on affective computing and intelligent interaction (ACII 2011). vol. 2. Memphis, US: Springer; 2011. p. 72–79.

    Google Scholar 

  74. Rusting CL. Personality, mood, and cognitive processing of emotional information: three conceptual frameworks. Psychol Bull. 1998;124(2):165–196.

    Article  CAS  PubMed  Google Scholar 

  75. Velásquez JD. When robots weep: emotional memories and decision-making. In: Proceedings of the 15th national/10th conference on Artificial intelligence/innovative applications of artificial intelligence. Madison, US: American Association for Artificial Intelligence; 1998. p. 70–5.

  76. Velásquez JD. Modeling emotion-based decision-making. In: Proceedings of the 1998 AAAI fall symposium emotional and intelligent; 1998. p. 164–9.

  77. El-Nasr MS, Ioerger TR, Yen J. PETEEI: a PET with evolving emotional intelligence. In: Proceedings of the third annual conference on autonomous agents (AGENTS ’99). New York, NY: ACM; 1999. p. 9–15.

  78. Gebhard P, Kipp M, Klesen M, Rist T. Adding the emotional dimension to scripting character dialogues. In: Proceedings of the 4th international workshop on intelligent virtual agents; 2003. p. 48–56.

  79. Gebhard P, Klesen M, Rist T. Coloring multi-character conversations through the expression of emotions. In: Proceedings of the tutorial and research workshop on affective dialogue systems; 2004. p. 128–41.

  80. Hudlicka E. Beyond cognition: modeling emotion in cognitive architectures. In: Proceedings of the international conference on cognitive modeling (ICCM’04). CMU, Pittsburgh, PA; 2004.

  81. Hudlicka E. Two sides of appraisal: implementing appraisal and its consequences within a cognitive architecture. In: Proceedings of the AAAI spring symposium: architectures for modeling emotion. AAAI Press; 2004. p. 24–31.

  82. Breazeal C. Emotion and sociable humanoid robots. Int J Hum Comput Stud. 2003;59(1–2):119–155.

    Article  Google Scholar 

  83. Stone CP. Motivation: drives and incentives. In: Moss FA, editor. Comparative psychology. psychology series. New York, NY: Prentice-Hall; 1934. p. 73–112.

  84. Breazeal C, Scassellati B. How to build robots that make friends and influence people. In: Proceedings of the international conference on intelligent robots and systems (IROS ’99). vol. 2; 1999. p. 858–63.

  85. Breazeal C, Scassellati B. Infant-like social interactions between a robot and a human caregiver. Adapt Behav. 2000;8(1):49–74.

    Article  Google Scholar 

  86. Hampson SE. State of the art: personality. Psychol. 1999;12(6):284–288.

    Google Scholar 

  87. John OP, Robins RW, Pervin LA. Handbook of personality: theory and research. New York City: Guilford Press; 2008.

    Google Scholar 

  88. Byrne JH, editor. Concise learning and memory. 1st ed. Waltham: Academic Press; 2008.

  89. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000.

    Google Scholar 

  90. Gray WD, editor. Integrated models of cognitive systems. 1st ed. Oxford: Oxford University Press; 2007.

  91. Tanji J, Hoshi E. Behavioral planning in the prefrontal cortex, vol. 11. Amsterdam: Elsevier Science Ltd; 2001. p. 164–70.

  92. Busemeyer JR, Johnson JG. Computational models of decision making. In: Koehler DJ, Harvey N, editors. Blackwell handbook of judgment and decision making. Hoboken: Blackwell Publishing Ltd; 2008. p. 133–54.

    Google Scholar 

  93. Morén J, Balkenius C. A computational model of emotional learning in the amygdala. In: From animals to animats 6: proceedings of the 6th international conference on the simulation of adaptive behaviour. Cambridge, MA: MIT Press; 2000.

  94. Sollenberger D, Singh M. Koko: an architecture for affect-aware games. Auton Agents Multi-Agent Syst. 2010;p. 1–32.

  95. Laird JE, Newell A, Rosenbloom PS. SOAR: an architecture for general intelligence. Artif Intell. 1987;33(1):1–64.

    Google Scholar 

  96. Busemeyer JR, Dimperio E, Jessup RK. Integrating emotional processes into decision-making models. Integr Model Cogn Syst. 2007;p. 213–29.

  97. Anderson JR, Lebiere C. The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum Associates; 1998.

    Google Scholar 

  98. Fum D, Stocco A. Memory, emotion, and rationality: an ACT-R interpretation for gambling task results. In: Proceedings of the 6th international conference on cognitive modeling. Pittsburgh; 2004. p. 106–11.

  99. Laird JE. Extending the soar cognitive architecture. In: Proceeding of the conference on artificial general intelligence (2008). Amsterdam: IOS Press; 2008. p. 224–35.

  100. Bach J. Principles of synthetic intelligence PSI: an architecture of motivated cognition. Oxford: Oxford University Press; 2009.

    Google Scholar 

  101. Bach J. The micropsi agent architecture. In: Proceedings of the international conference on cognitive modeling (ICCM-5); 2003. p. 15–20.

  102. Bach J, Vuine R. Designing agents with micropsi node nets. In: Günter A, Kruse R, Neumann B, editors. Advances in artificial intelligence. vol. 2821 of lecture notes in computer science. Berlin: Springer; 2003. p. 164–78.

    Google Scholar 

  103. Scheutz M, Schermerhorn P. Affective goal and task selection for social robots. In: Vallverdú J, Casacuberta D, editors. The handbook of research on synthetic emotions and sociable robotics: new applications in affective computing and artificial intelligence. IGI Global; 2009. p. 74–87.

  104. Reithinger N, Gebhard P, Löckelt M, Ndiaye A, Pfleger N, Klesen M. Virtual human: dialogic and affective interaction with virtual characters. In: ICMI ’06: Proceedings of the 8th international conference on multimodal interfaces. New York; 2006. p. 51–8.

  105. Gebhard P, Kipp KH. Are computer-generated emotions and moods plausible to humans? In: Proceedings of the 6th international conference on intelligent virtual agents; 2006. p. 343–56.

  106. Gratch J, Marsella S. Evaluating a computational model of emotion. Auton Agents Multi-Agent Syst. 2005;11(1):23–43.

    Article  Google Scholar 

  107. El-Nasr MS, Ioerger TR, Yen J, House DH, Parke FI. Emotionally expressive agents. In: Proceedings of the computer animation (CA ’99). Washington, DC: IEEE Computer Society; 1999. p. 48.

  108. Swartout W, Gratch J, Hill RW, Hovy E, Marsella S, Rickel J, et al. Toward virtual humans. AI Mag. 2006;27(2):96–108.

    Google Scholar 

  109. Breazeal C. Toward sociable robots. Robot Auton Syst. 2003;42(3-4):167–75.

    Article  Google Scholar 

  110. Scherer KR. Psychological models of emotion. In: Borod J, editor. The neuropsychology of emotion. Oxford: Oxford University Press; 2000. p. 137–166.

    Google Scholar 

  111. Wehrle T, Scherer KR. Toward computational modelling of appraisal theories. In: Scherer KR, Schorr A, Johnstone T, editors. Appraisal processes in emotion: theory, methods, research. New York: Oxford University Press; 2001. p. 350–365.

    Google Scholar 

  112. Moors A. Theories of emotion causation: a review. Cogn Emot. 2009;23(4):625–662.

    Article  Google Scholar 

  113. Davis DN. Cognitive architectures for affect and motivation. Cogn Comput. 2010;2(3):199–216.

    Article  Google Scholar 

  114. Gratch J, Marsella S, Wang N, Stankovic B. Assessing the validity of appraisal-based models of emotion. In: Proceedings of the international conference on affective computing and intelligent interaction and workshops (ACII). IEEE; 2009. p. 1–8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis-Felipe Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, LF., Ramos, F. Development of Computational Models of Emotions for Autonomous Agents: A Review. Cogn Comput 6, 351–375 (2014). https://doi.org/10.1007/s12559-013-9244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9244-x

Keywords

Navigation