Abstract
Cellular senescence is a multifactorial phenomenon of growth arrest and distorted function, which has been recognized as an important feature during tumor suppression mechanisms and a contributor to aging. Senescent cells have an altered secretion pattern called Senescence-Associated Secretory Phenotype (SASP) that comprises a complex mix of factors including cytokines, growth factors, chemokines, and matrix metalloproteinases. SASP has been related with local inflammation that leads to cellular transformation and neurodegenerative diseases. Various pathways for senescence induction have been proposed; the most studied is replicative senescence due to telomere attrition called replicative senescence (RS). However, senescence can be prematurely achieved when cells are exposed to diverse stimuli such as oxidative stress (stress-induced premature senescence, SIPS) or proteasome inhibition (proteasome inhibition-induced premature senescence, PIIPS). SASP has been characterized in RS and SIPS but not in PIIPS. Hence, our aim was to determine SASP components in primary lung fibroblasts obtained from CD-1 mice induced to senescence by PIIPS and compare them to RS and SIPS. Our results showed important variations in the 62 cytokines analyzed, while SIPS and RS showed an increase in the secretion of most cytokines, and in PIIPS only 13 were incremented. Variations in glutathione-redox balance were also observed in SIPS and RS, and not in PIIPS. All senescence types SASP displayed a pro-inflammatory profile and increased proliferation in L929 mice fibroblasts exposed to SASP. However, the behavior observed was not exactly the same, suggesting that the senescence induction pathway might encompass dissimilar responses in adjacent cells and promote different outcomes.
Similar content being viewed by others
References
Abken H, Hegger R, Bützler C, Willecke K (1993) Short DNA sequences from the cytoplasm of mouse tumor cells induce immortalization of human lymphocytes in vitro. Proc Natl Acad Sci U S A 90:6518–6522
Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990. doi:10.1038/ncb2784
Alam K, Ghousunnissa S, Nair S, Valluri VL, Mukhopadhyay S (2010) Glutathione-redox balance regulates c-rel-driven IL-12 production in macrophages: possible implications in antituberculosis immunotherapy. J Immunol 184:2918–2929. doi:10.4049/jimmunol.0900439
Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637. doi:10.1038/nature05268
Bhat R, Crowe E, Bitto A, Moh M, Katsetos C, Garcia F, Johnson F, Trojanowski J, Sell C, Torres C (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7, e45069. doi:10.1371/journal.pone.0045069
Bitto A, Sell C, Crowe E, Lorenzini A, Malaguti M, Hrelia S, Torres C (2010) Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 316:2961–2968. doi:10.1016/j.yexcr.2010.06.021
Blazer S, Khankin E, Segev Y, Ofir R, Yalon-Hacohen M, Kra-Oz Z, Gottfried Y, Larisch S, Skorecki KL (2002) High glucose-induced replicative senescence: point of no return and effect of telomerase. Biochem Biophys Res Commun 296:93–101. doi:10.1016/S0006-291X(02)00818-5
Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705. doi:10.1146/annurev-physiol-030212-183653
Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740. doi:10.1038/nrm2233
Campisi J, Andersen J, Kapahi P, Melov S (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21:354–9. doi:10.1016/j.semcancer.2011.09.001
Chen Z, Trotman L, Shaffer D, Lin H, Dotan Z, Niki M, Koutcher J, Scher H, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi P (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730. doi:10.1038/nature03918
Cheng B, Maffi S, Martínez A, Villareal Y, Morales L, Roberts J (2011) Insulin-like Growth Factor-I mediates neuroprotection in proteasome inhibition-induced cytotoxicity in SH-SY5Y cells. Mol Cell Neurosci 47:181–190. doi:10.1016/j.mcn.2011.04.002
Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868. doi:10.1371/journal.pbio.0060301
Coppé J, Patil C, Rodier F, Krtolica A, Beauséjour C, Parrinello S, Hodgson J, Chin K, Desprez P, Campisi J (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS ONE 5, e9188. doi:10.1371/journal.pone.0009188
Coppé J, Rodier F, Patil C, Freund A, Desprez P, Campisi J (2011) The tumor suppressor and aging biomarker p16INK4a induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286:36396–36403. doi:10.1074/jbc.M111.257071
Cosme-Blanco W, Shen M, Lazar A, Pathak S, Lozano G, Multani A, Chang S (2007) Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-cellular senescence. EMBO Rep 8:497–503. doi:10.1038/sj.embor.7400937
Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M (2004) Replicative senescence: a critical review. Mech Ageing Dev 125:827–848. doi:10.1016/j.mad.2004.07.010
Dilley T, Bowden G, Chen Q (2003) Novel mechanisms of sublethal oxidant toxicity: induction of premature senescence in human fibroblasts confers tumor promoter activity. Exp Cell Res 290:38–48. doi:10.1016/S0014-4827(03)00308-2
Dimri G (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512. doi:10.1016/j.ccr.2005.05.025
Dimri G, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano E, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker than identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367
Fujii S, Hara H, Araya J, Takasaka N, Kojima J, Ito S, Minagawa S, Yumino Y, Ishikawa T, Numata T, Kawaishi M, Hirano J, Odaka M, Morikawa T, Nishimura S, Nakayama K, Kuwano K (2012) Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology 1:630–641. doi:10.4161/onci.20297
Galván-Arzate S, Pedraza-Chaverrí J, Medina-Campos ON, Maldonado PD, Vázquez-Román B, Ríos C, Santamaría A (2005) Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol 43:1037–1045
Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–36
Hayflick L, Moorhead P (1961) The serial cultivation of human cell strains. Exp Cell Res 25:585–621
Jones DP, Mody VC Jr, Carlson JL, Lynn MJ, Sternberg P Jr (2002) Redox analysis of human plasma allows separation of pro-oxidants events of aging from decline in antioxidant defenses. Free Radic Biol Med 33:1290–1300. doi:10.1016/S0891-5849(02)01040-7
Kamide Y, Utsugi M, Dobashi K, Ono A, Ishizuka T, Hisada T, Koga Y, Uno K, Hamuro J, Mori M (2011) Intracellular glutathione redox status in human dendritic cells regulates IL-27 production and T-cell polarization. Allergy 66:1183–1192. doi:10.1111/j.1398-9995.2011.02611.x
Kang H, Lee K, Kim S, Choi H, Park S (2011) Autophagy impairment induces premature senescence through a ROS- and p53-dependent manner in primary human fibroblasts. PLoS ONE 6, e23367. doi:10.1371/journal.pone.0023367
Kiecolt-Glaser J, Preacher K, MacCallum R, Atkinson C, Malarkey W, Glaser R (2003) Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc Nat Acad USA 100:9090–9095
Königsberg M, López-Diazguerrero NE, Rivera-Martinez LP, González-Puertos VY, González-Vieira R, Gutiérrez-Ruiz MC, Zentella A (2007) The physiological deterioration associated to breeding in female mice: a model for the study of senescence and aging. Comp Biochem Physiol A 146:695–701. doi:10.1016/j.cbpa.2006.05.005
Krizhanovsky V, Xue W, Zender L, Yon M, Hernando E, Lowe SW (2008a) Implications of cellular senescence in tissue damage response, tumor suppression, and stem cell biology. Cold Spring Harb Symp Quant Biol 73:513–22. doi:10.1101/sqb.2008.73.048
Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol doi. doi:10.1038/ncb3195
Lee J, Kim B, Park M, Lee Y, Kim Y, Lee B, Lee J (2011) PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Different 18:666–677. doi:10.1038/cdd.2010.139
Li B, Alli R, Vogel P, Geiger TL (2014) IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol 7:869–878. doi:10.1038/mi.2013.103
Lopes U, Erhardt P, Yao R, Cooper G (1997) p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem 272:12893–12896. doi:10.1074/jbc.272.20.12893
López-Diazguerrero NE, López-Araiza H, Conde-Perezprina JC, Bucio L, Cárdenas-Aguayo M, Ventura J, Covarrubias L, Gutiérrez-Ruiz M, Zentella A, Königsberg M (2006) Bcl-2 protects against oxidative stress while inducing premature senescence. Free Rad Biol Med 40:1161–1169. doi:10.1016/j.freeradbiomed.2005.11.002
López-Otín C, Blasco M, Patridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. doi:10.1016/j.cell.2013.05.039
McElhaney JE, Effros RB (2009) Immunosenescence: what does it mean to health outcomes in older adults? Curr Opin Immunol 21:418–424. doi:10.1016/j.coi.2009.05.023
Muller M (2006) Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic Biol Med 41(11):1670–1677. doi:10.1016/j.freeradbiomed.2006.09.004
Muller M (2009) Cellular senescence: molecular mechanisms, in vivo significance and redox considerations. Antioxid Redox Signal 11:59–98. doi:10.1089/ars.2008.2104
Muñoz-Espin D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118. doi:10.1016/j.cell.2013.10.019
Murata Y, Ohteki T, Koyasu S, Hamuro J (2002a) IFN-gamma and pro-inflammatory cytokine production by antigen-presenting cells is dictated by intracellular thiol redox status regulated by oxygen tension. Eur J Immunol 32:2866–2873
Murata Y, Shimamura T, Hamuro J (2002b) The polarization of T(h)1 T(h)2 balance is dependent on the intracellular thiol redox status of macrophages due to the distinctive cytokine production. Int Immunol 14:201–212. doi:10.1093/intimm/14.2.201
Pandit B, Gartel A (2011) Proteasome inhibitors induce p53-independent apoptosis in human cancer cells. Am J Pathol 178:355–360. doi:10.1016/j.ajpath.2010.11.010
Rajawat Y, Hilioti Z, Bossis I (2009) Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev 8:199–213. doi:10.1016/j.arr.2009.05.001
Reynaert NL (2011) Glutathione biochemistry in asthma. Biochim Biophys Acta 1810:1045–1051. doi:10.1016/j.bbagen
Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556. doi:10.1083/jcb.201009094
Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484. doi:10.1093/nar/gkm744
Rodier F, Coppé D, Patil C, Hoeijmakers W, Muñoz D, Raza S, Freund A, Campeau E, Davalos A, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979. doi:10.1038/ncb1909
Rodier F, Muñoz D, Teachenor R, Chu V, Le O, Bhaumik D, Coppé J, Campeau E, Beauséjour C, Kim S, Davalos A, Campisi J (2010) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Scien 124:68–81. doi:10.1242/jcs.071340
Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells M, Di Giacomo V, Yosef R, Pipel N, Krizhanovsky V, Sharpe J, Keyes W (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130. doi:10.1016/j.cell.2013.10.041
Suzuki K, Nakaji S, Kurakake S, Totsuka M, Sato K, Kuriyama T, Fujimoto H, Shibusawa K, Machida K, Sugawara K (2003) Exhaustive exercise and type-1/type-2 cytokine balance with special focus oninterleukin-12 p40/p70. Exerc Immunol Rev 9:48–57
Torres CA, Perez VI (2008) Proteasome modulates mitochondrial function during cellular senescence. Free Radic Biol Med 44:403–414. doi:10.1016/j.freeradbiomed.2007.10.002
Torres C, Lewis L, Cristofalo V (2006) Proteasome inhibitors shorten replicative life span and induce a senescence-like phenotype of human fibroblasts. J Cell Physiol 207:845–853. doi:10.1002/jcp.20630
Toussaint O, Medrano E, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945. doi:10.1016/S0531-5565(00)00180-7
Triana-Martínez F, López-Diazguerrero NE, Maciel-Barón LA, Morales-Rosales SL, Galván-Arzate S, Fernández-Perrino FJ, Zentella A, Pérez VI, Gomez-Quiroz LE, Königsberg M (2014) Cell proliferation arrest and redox state status as part of different stages during senescence establishment in mouse fibroblasts. Biogerontology 15:165–176. doi:10.1007/s10522-013-9488-6
Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454:1065–1071. doi:10.1038/nature07216
Wagner M, Hampel B, Bernhard D, Hala M, Zwerschke W, Jansen-Durr P (2001) Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Exp Gerontol 36:1327–1347. doi:10.1016/S0531-5565(01)00105-X
Zacarias-Fluck MF, Morancho B, Vicario R, Luque Garcia A, Escorihuela M, Villanueva J, Rubio IT, Arribas J (2015) Effect of cellular senescence on the growth of HER2-positive breast cancers. J Natl Cancer Inst 107:doi: 10.1093/jnci/djv020.
Acknowledgments
The authors would like to thank Dr. Rocío González-Vieira from UAM-I for animal supply; we also thank the CBS-UAMI Confocal Core for confocal image acquisition and analysis. This work was supported by CONACyT’s grant CB-2012-1-178349 as well as the “Red Temática de Envejecimiento, Salud y Desarrollo Social” from CONACyT and INGER DI-PI004/2012. In addition this work was supported by grants 1RO1NS078283, R21AG046943 and the Commonwealth of Pennsylvania Universal Research Enhancement Grant awarded to C.Torres. LA Maciel-Barón and SL Morales-Rosales are CONACyT scholarship holders.
Author information
Authors and Affiliations
Corresponding author
Additional information
L. A. Maciel-Barón Posgrado en Biología Experimental, UAMI.
Electronic supplementary material
Below is the link to the electronic supplementary material.
S. Figure 1
Close-up for p16 and β-galactosidase. Close-up for unmerged images. a Control (day 9), b RS (day 21), c PIIPS (day 15), and d SIPS (day 15) cells. p16 is stained in green, DAPI in blue, and β-galactosidase in red. (PPTX 2038 kb)
S. Figure 2
Membranes used for SASP analysis. The components present in the SASP secreted by the different senescent-induced cells were analyzed and compared at selected time points for each kind of senescence (day 15 for SIPS and PIIPS, day 21 for RS, and day 9 for control non-senescent cells). MEM supplemented medium was changed to MCDB105-free serum (Conditioned Media, CM), and cells were incubated for 48 h. After that time, CM was recovered and frozen at −80 °C for further analysis. The figure shows representative membranes from the kit that where incubated with 1 mL of 10-fold concentrate CM from the different senescent-induced cells. The spots marked in a red box are the positive controls. The other boxes show some representative cytokines that are discussed in the text: IL-6 (green), IL1a (yellow), and IL12 (blue). (PPTX 2038 kb)
About this article
Cite this article
Maciel-Barón, L.A., Morales-Rosales, S.L., Aquino-Cruz, A.A. et al. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. AGE 38, 26 (2016). https://doi.org/10.1007/s11357-016-9886-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11357-016-9886-1