Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Two-stage ELM for phishing Web pages detection using hybrid features

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Increasing high volume phishing attacks are being encountered every day due to attackers’ high financial returns. Recently, there has been significant interest in applying machine learning for phishing Web pages detection. Different from literatures, this paper introduces predicted labels of textual contents to be part of the features and proposes a novel framework for phishing Web pages detection using hybrid features consisting of URL-based, Web-based, rule-based and textual content-based features. We achieve this framework by developing an efficient two-stage extreme learning machine (ELM). The first stage is to construct classification models on textual contents of Web pages using ELM. In particular, we take Optical Character Recognition (OCR) as an assistant tool to extract textual contents from image format Web pages in this stage. In the second stage, a classification model on hybrid features is developed by using a linear combination model-based ensemble ELMs (LC-ELMs), with the weights calculated by the generalized inverse. Experimental results indicate the proposed framework is promising for detecting phishing Web pages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abbasi, A., Chen, H.: A comparison of tools for detecting fake Websites. Computer 42(10), 78–86 (2009)

    Article  Google Scholar 

  2. Abdelhamid, N., Ayesh, A., Thabtah, F.: Phishing detection based associative classification data mining. Expert Syst. Appl. 41(13), 5948–5959 (2014)

    Article  Google Scholar 

  3. Arachchilage, N.A.G., Love, S.: A game design framework for avoiding phishing attacks. Comput. Hum. Behav. 29(3), 706–714 (2013)

    Article  Google Scholar 

  4. Barraclough, P.A., Hossain, M.A., Tahir, M.A., Sexton, G., Aslam, N.: Intelligent phishing detection and protection scheme for online transactions. Expert Syst. Appl. 40(11), 4697–4706 (2013)

    Article  Google Scholar 

  5. Cao, J.J., Kwong, S., Wang, R., Li, K.: A weighted voting method using minimum square error based on Extreme Learning Machine. In: Proceedings of International Conference on Machine Learning and Cybernetics, 1, 411–414 (2012)

  6. Cao, J., Lin, Z., Huang, G. B., Liu, N.: Voting based extreme learning machine. Inf. Sci. 185(1), 66–77 (2012)

    Article  MathSciNet  Google Scholar 

  7. Ding, S., Zhao, H., Zhang, Y., Xu, X., Nie, R.: Extreme learning machine: algorithm, theory and application. Artif. Intell. Rev. 44(1), 103–115 (2013)

    Article  Google Scholar 

  8. Dunlop, M., Groat, S., Shelly, D.: GoldPhish: Using Images for Content-Based Phishing Analysis. In: Proceedings of International Conference on Internet Monitoring and Protection, 123-128, IEEE (2010)

  9. Feroz, M.N., Mengel, S.: Examination of data, rule generation and detection of phishing URLs using online logistic regression. In: Proceddings of 2014 IEEE International Conference on Big Data, IEEE, 241-250 (2014)

  10. Google Safe Browsing, https://developers.google.com/safe-browsing/?hl=zh-CN

  11. Gu, X., Wang, H., Ni, T.: An Efficient Approach to Detecting Phishing Web. J. Comput. Inf. Syst. 9(14), 5553–5560 (2013)

    Google Scholar 

  12. He, M., Horng, S.J., Fan, P., Khan, M.K., Run, R.S., Lai, J.L., et al.: An efficient phishing Webpage detector. Expert Syst. Appl. 38(10), 12018–12027 (2011)

    Article  Google Scholar 

  13. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward Neural Networks. In: Proceedings of IEEE International Joint Confrence on Neural Networks, 2, 985-990, IEEE (2004)

  14. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1-3), 489–501 (2006)

    Article  Google Scholar 

  15. Huang, G.B., Ding, X.J., Zhou, H.M.: Optimization method based extreme learning machine for classification. Neurocomputing 74(1-3), 155–163 (2010)

    Article  Google Scholar 

  16. Huang, G.B., Zhou, H.M., Ding, X.J., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 513–529 (2012)

    Article  Google Scholar 

  17. Huang, D., Xu, K., Pei, J.: Malicious URL detection by dynamically mining patterns without pre-defined elements. World Wide Web 17(6), 1375–1394 (2014)

    Article  Google Scholar 

  18. ICTCLAS, http://ictclas.nlpir.org/

  19. Iraqi, Y., Jones, A., Khonji, M.: Phishing detection: a literature survey. IEEE Commun. Surv. Tutorials 15(4), 2091–2121 (2013)

    Article  Google Scholar 

  20. Kumaraguru, P., Sheng, S., Acquisti, A., Cranor, L. F., Hong, J.: Lessons from a real world evaluation of anti-phishing training. In: Proceedings of eCrime Researchers Summit, 1-12, IEEE (2008)

  21. Kumaraguru, P., Sheng, S., Acquisti, A., Cranor, L. F., Hong, J.: Teaching johnny not to fall for phish. ACM Trans. Internet Technol. 10(2), 890–895 (2010)

    Article  Google Scholar 

  22. Laencina, P.J.G.: Improving predictions using linear combination of multiple extreme learning machines. Inf. Technol. Control 42(1), 86–93 (2013)

    Google Scholar 

  23. Lan, Y., Soh, Y.C., Huang, G.B.: Ensemble of online sequential extreme learning machine. Neurocomputing 72, 3391–3395 (2009)

    Article  Google Scholar 

  24. Li, S., Schmitz, R.: A novel anti-phishing framework based on honeypots. In: Proceedings of eCrime Researchers Summit, 1-13, IEEE (2009)

  25. Li, Y., Chu, S., Xiao, R.: A pharming attack hybrid detection model based on IP addresses and Web content. Optik-Inter. J. Light and Electron Optics 126, 234–239 (2015)

    Article  Google Scholar 

  26. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Process Lett. 7(8), 754–757 (2010)

    Google Scholar 

  27. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect malicious Web sites from suspicious URLs. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1245-1254, ACM (2009)

  28. Miche, Y., Sorjamaa, A., Bas, P., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–62 (2010)

    Article  Google Scholar 

  29. Mohammad, R.M., Thabtah, F., Mccluskey, L.: Predicting phishing Websites based on self-structuring Neural Network. Neural Comput. & Applic. 25(2), 443–458 (2014)

    Article  Google Scholar 

  30. Nah, F H.: A study on tolerable waiting time: how long are Web users willing to wait? Behav. Inform. Technol. 23(3), 153–163 (2003)

    Article  Google Scholar 

  31. Netcraft, http://www.netcraft.com/anti-phishing

  32. Ramanathan, V., Wechsler, H.: Phishing Website detection using Latent Dirichlet Allocation and AdaBoost. In: Proceedings of IEEE International Conference on Intelligence and Security Informatics, 102–107 (2012)

  33. Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-Hill (1983)

  34. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: CANTINA+: a feature-rich machine learning framework for detecting phishing Web sites. ACM Trans. Inf. Syst. Secur. 14(2), 1–28 (2011)

    Article  Google Scholar 

  35. Yao, W., He, J., Wang, H., Zhang, Y., Cao, J.: Collaborative topic ranking: leveraging item meta-data for sparsity reduction. In: Proceedings of AAAI, 374-380 (2015)

  36. Zhang, H., Liu, G., Chow, T.W.S., Liu, W.: Textual and visual content-based anti-phishing: a bayesian approach. IEEE Trans. Neural Netw. 22(10), 1532–1546 (2011)

    Article  Google Scholar 

  37. Zhuang, W.W., Jiang, Q.S.: Intelligent anti-phishing framework using multiple classifiers combination. J. Comput. Inf. Syst. 8(17), 7267–7281 (2012)

    Google Scholar 

Download references

Acknowledgements

This research work is supported by Special Fund on Guangdong Province Chinese Academy of Sciences Comprehensive Strategic Cooperation (NO.2013B091300019), Shenzhen Fundamental Research Foundation (NO.CXZZ20150813155917544, JCYJ20150630114942277), and Guangdong National Natural Science Foundation of China (NO.U1401258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Jiang, Q., Chen, L. et al. Two-stage ELM for phishing Web pages detection using hybrid features. World Wide Web 20, 797–813 (2017). https://doi.org/10.1007/s11280-016-0418-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-016-0418-9

Keywords

Navigation