Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Wavelet and Total Variation Based Method Using Adaptive Regularization for Speckle Noise Reduction in Ultrasound Images

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ultrasound (US) images are useful in medical diagnosis. US is preferred over other medical diagnosis technique because it is non-invasive in nature and has low cost. The presence of speckle noise in US images degrades its usefulness. A method that reduces the speckle noise in US images can help in correct diagnosis. This method also should preserve the important structural information in US images while removing the speckle noise. In this paper, a method for removing speckle noise using a combination of wavelet, total variation (TV) and morphological operations has been proposed. The proposed method achieves denoising by combining the advantages of the wavelet, TV and morphological operations along with the utilization of adaptive regularization parameter which controls the amount of smoothing during denoising. The work in this paper has the capability of reducing speckle noise while preserving the structural information in the denoised image. The proposed method demonstrates strong denoising for synthetic and real ultrasound images, which is also supported by the results of various quantitative measures and visual inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

US:

Ultrasound

TV:

Total variation

SRAD:

Speckle reducing anisotropic diffusion

PM:

Perona Malik

FOSRAD:

Faster oriented speckle reducing anisotropic diffusion

PSNR:

Peak signal to noise ratio

MSE:

Mean squared error

RMSE:

Root mean squared error

UQI:

Universal Quality Index

SNR:

Signal to noise ratio

MAE:

Mean absolute error

FSIM:

Feature Similarity Index Metric

SSI:

Speckle Suppression Index

MPSSI:

Mean Preservation Speckle Suppression Index

SMPI:

Speckle Suppression and Mean Preservation Index

NK:

Normalized correlation

AD:

Average difference

NAE:

Normalized absolute error

SSIM:

Structural Similarity Index Metric

FOPDE:

Fourth order partial differential equations

MTV:

Modified total variation

SB:

Split Bregman

References

  1. Gupta, D., Anand, R. S., & Tyagi, B. (2014). Ripplet domain non-linear filtering for speckle reduction in ultrasound medical images. Biomedical Signal Processing and Control, 10(1), 79–91.

    Article  Google Scholar 

  2. Hiremath, P. S., Akkasaligar, P. T., & Badiger, S. (2013). Speckle noise reduction in medical ultrasound images. In Advancements and breakthroughs in ultrasound imaging (pp. 201–241). Intech Publications.

  3. Ragesh, N. K., Anil, A. R., & Rajesh, R. (2011). Digital image denoising in medical ultrasound images: A survey. In International conference on artificial intelligence and machine learning, (vol. 12, pp. 63–73).

  4. Achim, A., Bezerianos, A., & Tsakalides, P. (2001). Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Transactions on Medical Imaging, 20(8), 772–783.

    Article  Google Scholar 

  5. Gupta, S., Chauhan, R. C., & Sexana, S. C. (2004). Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Medical & Biological Engineering & Computing, 42(2), 189–192.

    Article  Google Scholar 

  6. Chen, Y., & Raheja, A. (2006). Wavelet lifting for speckle noise reduction in ultrasound images. Engineering in Medicine and Biology Society, 3, 3129–3132.

    Google Scholar 

  7. Sudha, S., Suresh, G. R., & Sukanesh, R. (2009). Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance. International Journal of Computer Theory and Engineering, 1(1), 7–12.

    Article  Google Scholar 

  8. Mateo, J. L., & Fernández-Caballero, A. (2009). Finding out general tendencies in speckle noise reduction in ultrasound images. Expert Systems with Applications, 36(4), 7786–7797.

    Article  Google Scholar 

  9. Sarode, M., & Deshmukh, P. (2011). Reduction of speckle noise and image enhancement of images using filtering technique. International Journal of Advancements in Technology, 2(1), 30–38.

    Google Scholar 

  10. Ruikar, S. D., & Doye, D. D. (2011). Wavelet based image denoising technique. International Journal of Advanced Computer Science and Applications, 2(3), 49–53.

    Google Scholar 

  11. Andria, G., Attivissimo, F., Cavone, G., Giaquinto, N., & Lanzolla, A. M. L. (2012). Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images. Measurement: Journal of the International Measurement Confederation, 45(7), 1792–1800.

    Article  Google Scholar 

  12. Joel, T., & Sivakumar, R. (2013). Despeckling of ultrasound medical images: A survey. Journal of Image and Graphics, 1(3), 161–165.

    Article  Google Scholar 

  13. Yadav, A. K., Roy, R., Kumar, A. P., Kumar, C. S., & Dhakad, S. K. (2015). De-noising of ultrasound image using discrete wavelet transform by symlet wavelet and filters. In International conference on advances in computing, communications and informatics, Kochi (pp. 1204–1208).

  14. Zhang, J., Lin, G., Wu, L., & Cheng, Y. (2016). Speckle filtering of medical ultrasonic images using wavelet and guided filter. Ultrasonics, 65, 177–193.

    Article  Google Scholar 

  15. Gai, S., Zhang, B., Yang, C., & Yu, L. (2018). Speckle noise reduction in medical ultrasound image using monogenic wavelet and Laplace mixture distribution. Digital Signal Processing: A Review Journal, 72, 192–207.

    Article  Google Scholar 

  16. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  17. Yu, Y., & Acton, S. T. (2002). Deconvolutional speckle reducing anisotropic diffusion. In International conference on image processing, ICIP, (vol. 11(11), pp. 1260–1270).

  18. Tauber, C., Batatia, H., & Ayache, A. (2004). A robust speckle reducing anisotropic diffusion. In International conference on image processing, ICIP, (vol. 1(2), pp. 247–250).

  19. Aja-Fernández, S., & Alberola-López, C. (2006). On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing, 15(9), 2694–2701.

    Article  Google Scholar 

  20. Krissian, K., Westin, C., Kikinis, R., & Vosburgh, K. G. (2007). Anisotropic diffusion. IEEE Transactions on Image Processing, 16(5), 1412–1424.

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, X., Liu, J., Xu, X., Chun, L., Tang, J., & Deng, Y. (2011). A robust detail preserving anisotropic diffusion for speckle reduction in ultrasound images. BMC Genomics, 12(SUPPL), 5.

    Google Scholar 

  22. Toufique, Y., El Moursli, R. C., Masmoudi, L., El Kharrim, A., Kaci, M., & Allal, S. (2014) Ultrasound image enhancement using an adaptive anisotropic diffusion filter. In Middle east conference on biomedical engineering, (pp. 1–4).

  23. Ramos-llordén, G., Vegas-sánchez-ferrero, G., Martin-fernandez, M., Alberola-López, C., & Aja-Fernández, S. (2015). Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Transactions on Image Processing, 24(1), 345–358.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, Z., & Tang, J. (2016) Cluster driven anisotropic diffusion for speckle reduction in ultrasound images. In International conference on image processing, (pp. 2325–2329).

  25. Fredj, A. H., Malek, J., & Bourennane, E. B. (2016). Fast oriented anisotropic diffusion filter. In International design and test workshop, (pp. 308–312).

  26. Scherzer, O., & Weickert, J. (2000). Relations between regularization and diffusion filtering. Journal of Mathematical Imaging and Vision, 12(1), 43–63.

    Article  MathSciNet  MATH  Google Scholar 

  27. Yue, Y., Croitoru, M. M., Bidani, A., Zwischenberger, J. B., & Clark, J. W. (2006). Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images. IEEE Transactions on Medical Imaging, 25(3), 297–311.

    Article  Google Scholar 

  28. Wang, Y., & Zhou, H. (2006). Total variation wavelet-based medical image denoising. International Journal of Biomedical Imaging, 2006, 1–12.

    Google Scholar 

  29. Bhoi, N., & Meher, S. (2008). Total variation based wavelet domain filter for image denoising. In International conference on emerging trends in engineering and technology, (pp. 20–25).

  30. Huang, Y., Ng, M. K., & Wen, Y. (2009). A new total variation method for multiplicative noise removal *. SIAM Journal on Imaging Sciences, 2(1), 20–40.

    Article  MathSciNet  MATH  Google Scholar 

  31. Bredies, K., Kunisch, K., & Pock, T. (2010). Total generalized variation. SIAM Journal on Imaging Sciences, 3(3), 492–526.

    Article  MathSciNet  MATH  Google Scholar 

  32. Abrahim, B. A., & Kadah, Y. (2011). Speckle noise reduction method combining total variation and wavelet shrinkage for clinical ultrasound imaging. In middle east conference on biomedical engineering, (pp. 80–83).

  33. Jin, Z., & Yang, X. (2011). A variational model to remove the multiplicative noise in ultrasound images. Journal of Mathematical Imaging and Vision, 39(1), 62–74.

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiaorong, X. U., & Yongjun, L. I. (2013). Image denoising research based on total variation and wavelet transformation. In International conference on consumer electronics, communications and networks, (pp. 339–342).

  35. Huang, J., & Yang, X. (2013). Fast reduction of speckle noise in real ultrasound images. Signal Processing, 93(4), 684–694.

    Article  MathSciNet  Google Scholar 

  36. Feng, W., Lei, H., & Gao, Y. (2014). Speckle reduction via higher order. IEEE Transactions on Image Processing, 23(4), 1831–1843.

    Article  MathSciNet  MATH  Google Scholar 

  37. Elyasi, I., & Pourmina, M. A. (2016). Reduction of speckle noise ultrasound images based on TV regularization and modified bayes shrink techniques. Optik (Stuttg), 127(24), 11732–11744.

    Article  Google Scholar 

  38. Wang, S., Huang, T.-Z., Zhao, X.-L., Mei, J.-J., & Huang, J. (2018). Speckle noise removal in ultrasound images by first- and second-order total variation. Numerical Algorithms, 78(2), 513–533.

    Article  MathSciNet  MATH  Google Scholar 

  39. Mei, J. J., Huang, T. Z., Wang, S., & Le Zhao, X. (2018). Second order total generalized variation for speckle reduction in ultrasound images. Journal of the Franklin Institute, 355(1), 574–595.

    Article  MathSciNet  MATH  Google Scholar 

  40. Goyal, M., & Sekhon, G. S. (2011). Hybrid threshold technique for speckle noise reduction using wavelets for grey scale images. International Journal of Computer Science and Technology, 2(2), 620–625.

    Google Scholar 

  41. Donoho, D. L. (1993). Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data. In Proceedings of symposia in applied mathematics (pp. 173–205).

  42. Rodríguez, P. (2013). Total variation regularization algorithms for images corrupted with different noise models: A review. Journal of Electrical and Computer Engineering, 1, 2013.

    MathSciNet  Google Scholar 

  43. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation noise removal algorithm. Physica D: Nonlinear Phenomena, 60(1–4), 259–268.

    Article  MathSciNet  MATH  Google Scholar 

  44. Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.

    MathSciNet  MATH  Google Scholar 

  45. Aujol, J. F., Gilboa, G., Chan, T., & Osher, S. (2006). Structure-texture image decomposition-modeling, algorithms, and parameter selection. International Journal of Computer Vision, 67(1), 111–136.

    Article  MATH  Google Scholar 

  46. Hassanpour, H., Samadiani, N., & Mahdi Salehi, S. M. (2015). Using morphological transforms to enhance the contrast of medical images. The Egyptian Journal of Radiology and Nuclear Medicine, 46(2), 481–489.

    Article  Google Scholar 

  47. Kaur, J., Kaur, J., & Kaur, M. (2011). Survey of despeckling techniques for medical ultrasound images. International Journal of Computer Technology and Applications, 2(4), 1003–1007.

    Google Scholar 

  48. Jensen, & Svendsen. (1992). Field II simulation program. [Online]. Available: http://field-ii.dk/examples/ftp_files/. Accessed 05 Oct 2017.

  49. Geertsma, T. S. A. (2011). Ultrasound cases. Ultrasoundcases.Info. [Online]. Available: http://www.ultrasoundcases.info/category.aspx?cat=66. Accessed 28 Aug 2017.

  50. Martin Zukal, P. D. Ing., Radek Beneš, Ing., Petr Číka, Ing., Kamil Říha, Ing. (2011). Ultrasound image database. [Online]. Available: http://splab.cz/en/download/databaze/ultrasound. Accessed: 29 Aug 2017.

  51. Rangaraju, K. S., Kumar, K., & Renumadhavi, C. H. (2012). Review paper on quantitative image quality assessment-medical ultrasound images. International Journal of Engineering, 1(4), 1–6.

    Google Scholar 

  52. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.

    Article  Google Scholar 

  53. Poobal, S., & Ravindran, G. (2011). The performance of fractal image compression on different imaging modalities using objective quality measures. International Journal of Engineering Science and Technology, 3(1), 525–530.

    Google Scholar 

  54. Xu, S., Liu, X., & Jiang, S. (2015). A fast feature similarity index for image quality assessment. International Journal of Signal Processing, Image Processing and Pattern Recognition, 8(11), 179–194.

    Article  Google Scholar 

  55. Santos, C. A. N., Martins, D. L. N., & Mascarenhas, N. D. A. (2017). Ultrasound Image despeckling using stochastic distance-based BM3D. IEEE Transactions on Image Processing, 26(6), 2632–2643.

    Article  MathSciNet  MATH  Google Scholar 

  56. Dellepiane, S. G., & Angiati, E. (2014). Quality assessment of despeckled SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2), 691–707.

    Article  Google Scholar 

  57. Nisha, A., & Kumar, S. (2013). Image quality assessment techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 3(7), 636–640.

    Google Scholar 

  58. You, Y. L., & Kaveh, M. (2000). Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 9(10), 1723–1730.

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, Y., Chen, W., Zhou, S., Yu, T., & Zhang, Y. (2011). MTV: modified total variation model for image noise removal. IEEE Electronics Letters, 47(10), 592–594.

    Article  Google Scholar 

  60. Goldstein, T., & Osher, S. (2009). The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2(2), 323–343.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birmohan Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, N., Singh, M. & Singh, B. Wavelet and Total Variation Based Method Using Adaptive Regularization for Speckle Noise Reduction in Ultrasound Images. Wireless Pers Commun 106, 1547–1572 (2019). https://doi.org/10.1007/s11277-019-06229-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06229-w

Keywords

Navigation