Abstract
Ultrasound (US) images are useful in medical diagnosis. US is preferred over other medical diagnosis technique because it is non-invasive in nature and has low cost. The presence of speckle noise in US images degrades its usefulness. A method that reduces the speckle noise in US images can help in correct diagnosis. This method also should preserve the important structural information in US images while removing the speckle noise. In this paper, a method for removing speckle noise using a combination of wavelet, total variation (TV) and morphological operations has been proposed. The proposed method achieves denoising by combining the advantages of the wavelet, TV and morphological operations along with the utilization of adaptive regularization parameter which controls the amount of smoothing during denoising. The work in this paper has the capability of reducing speckle noise while preserving the structural information in the denoised image. The proposed method demonstrates strong denoising for synthetic and real ultrasound images, which is also supported by the results of various quantitative measures and visual inspection.
Similar content being viewed by others
Abbreviations
- US:
-
Ultrasound
- TV:
-
Total variation
- SRAD:
-
Speckle reducing anisotropic diffusion
- PM:
-
Perona Malik
- FOSRAD:
-
Faster oriented speckle reducing anisotropic diffusion
- PSNR:
-
Peak signal to noise ratio
- MSE:
-
Mean squared error
- RMSE:
-
Root mean squared error
- UQI:
-
Universal Quality Index
- SNR:
-
Signal to noise ratio
- MAE:
-
Mean absolute error
- FSIM:
-
Feature Similarity Index Metric
- SSI:
-
Speckle Suppression Index
- MPSSI:
-
Mean Preservation Speckle Suppression Index
- SMPI:
-
Speckle Suppression and Mean Preservation Index
- NK:
-
Normalized correlation
- AD:
-
Average difference
- NAE:
-
Normalized absolute error
- SSIM:
-
Structural Similarity Index Metric
- FOPDE:
-
Fourth order partial differential equations
- MTV:
-
Modified total variation
- SB:
-
Split Bregman
References
Gupta, D., Anand, R. S., & Tyagi, B. (2014). Ripplet domain non-linear filtering for speckle reduction in ultrasound medical images. Biomedical Signal Processing and Control, 10(1), 79–91.
Hiremath, P. S., Akkasaligar, P. T., & Badiger, S. (2013). Speckle noise reduction in medical ultrasound images. In Advancements and breakthroughs in ultrasound imaging (pp. 201–241). Intech Publications.
Ragesh, N. K., Anil, A. R., & Rajesh, R. (2011). Digital image denoising in medical ultrasound images: A survey. In International conference on artificial intelligence and machine learning, (vol. 12, pp. 63–73).
Achim, A., Bezerianos, A., & Tsakalides, P. (2001). Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Transactions on Medical Imaging, 20(8), 772–783.
Gupta, S., Chauhan, R. C., & Sexana, S. C. (2004). Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Medical & Biological Engineering & Computing, 42(2), 189–192.
Chen, Y., & Raheja, A. (2006). Wavelet lifting for speckle noise reduction in ultrasound images. Engineering in Medicine and Biology Society, 3, 3129–3132.
Sudha, S., Suresh, G. R., & Sukanesh, R. (2009). Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance. International Journal of Computer Theory and Engineering, 1(1), 7–12.
Mateo, J. L., & Fernández-Caballero, A. (2009). Finding out general tendencies in speckle noise reduction in ultrasound images. Expert Systems with Applications, 36(4), 7786–7797.
Sarode, M., & Deshmukh, P. (2011). Reduction of speckle noise and image enhancement of images using filtering technique. International Journal of Advancements in Technology, 2(1), 30–38.
Ruikar, S. D., & Doye, D. D. (2011). Wavelet based image denoising technique. International Journal of Advanced Computer Science and Applications, 2(3), 49–53.
Andria, G., Attivissimo, F., Cavone, G., Giaquinto, N., & Lanzolla, A. M. L. (2012). Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images. Measurement: Journal of the International Measurement Confederation, 45(7), 1792–1800.
Joel, T., & Sivakumar, R. (2013). Despeckling of ultrasound medical images: A survey. Journal of Image and Graphics, 1(3), 161–165.
Yadav, A. K., Roy, R., Kumar, A. P., Kumar, C. S., & Dhakad, S. K. (2015). De-noising of ultrasound image using discrete wavelet transform by symlet wavelet and filters. In International conference on advances in computing, communications and informatics, Kochi (pp. 1204–1208).
Zhang, J., Lin, G., Wu, L., & Cheng, Y. (2016). Speckle filtering of medical ultrasonic images using wavelet and guided filter. Ultrasonics, 65, 177–193.
Gai, S., Zhang, B., Yang, C., & Yu, L. (2018). Speckle noise reduction in medical ultrasound image using monogenic wavelet and Laplace mixture distribution. Digital Signal Processing: A Review Journal, 72, 192–207.
Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.
Yu, Y., & Acton, S. T. (2002). Deconvolutional speckle reducing anisotropic diffusion. In International conference on image processing, ICIP, (vol. 11(11), pp. 1260–1270).
Tauber, C., Batatia, H., & Ayache, A. (2004). A robust speckle reducing anisotropic diffusion. In International conference on image processing, ICIP, (vol. 1(2), pp. 247–250).
Aja-Fernández, S., & Alberola-López, C. (2006). On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing, 15(9), 2694–2701.
Krissian, K., Westin, C., Kikinis, R., & Vosburgh, K. G. (2007). Anisotropic diffusion. IEEE Transactions on Image Processing, 16(5), 1412–1424.
Liu, X., Liu, J., Xu, X., Chun, L., Tang, J., & Deng, Y. (2011). A robust detail preserving anisotropic diffusion for speckle reduction in ultrasound images. BMC Genomics, 12(SUPPL), 5.
Toufique, Y., El Moursli, R. C., Masmoudi, L., El Kharrim, A., Kaci, M., & Allal, S. (2014) Ultrasound image enhancement using an adaptive anisotropic diffusion filter. In Middle east conference on biomedical engineering, (pp. 1–4).
Ramos-llordén, G., Vegas-sánchez-ferrero, G., Martin-fernandez, M., Alberola-López, C., & Aja-Fernández, S. (2015). Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Transactions on Image Processing, 24(1), 345–358.
Hu, Z., & Tang, J. (2016) Cluster driven anisotropic diffusion for speckle reduction in ultrasound images. In International conference on image processing, (pp. 2325–2329).
Fredj, A. H., Malek, J., & Bourennane, E. B. (2016). Fast oriented anisotropic diffusion filter. In International design and test workshop, (pp. 308–312).
Scherzer, O., & Weickert, J. (2000). Relations between regularization and diffusion filtering. Journal of Mathematical Imaging and Vision, 12(1), 43–63.
Yue, Y., Croitoru, M. M., Bidani, A., Zwischenberger, J. B., & Clark, J. W. (2006). Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images. IEEE Transactions on Medical Imaging, 25(3), 297–311.
Wang, Y., & Zhou, H. (2006). Total variation wavelet-based medical image denoising. International Journal of Biomedical Imaging, 2006, 1–12.
Bhoi, N., & Meher, S. (2008). Total variation based wavelet domain filter for image denoising. In International conference on emerging trends in engineering and technology, (pp. 20–25).
Huang, Y., Ng, M. K., & Wen, Y. (2009). A new total variation method for multiplicative noise removal *. SIAM Journal on Imaging Sciences, 2(1), 20–40.
Bredies, K., Kunisch, K., & Pock, T. (2010). Total generalized variation. SIAM Journal on Imaging Sciences, 3(3), 492–526.
Abrahim, B. A., & Kadah, Y. (2011). Speckle noise reduction method combining total variation and wavelet shrinkage for clinical ultrasound imaging. In middle east conference on biomedical engineering, (pp. 80–83).
Jin, Z., & Yang, X. (2011). A variational model to remove the multiplicative noise in ultrasound images. Journal of Mathematical Imaging and Vision, 39(1), 62–74.
Xiaorong, X. U., & Yongjun, L. I. (2013). Image denoising research based on total variation and wavelet transformation. In International conference on consumer electronics, communications and networks, (pp. 339–342).
Huang, J., & Yang, X. (2013). Fast reduction of speckle noise in real ultrasound images. Signal Processing, 93(4), 684–694.
Feng, W., Lei, H., & Gao, Y. (2014). Speckle reduction via higher order. IEEE Transactions on Image Processing, 23(4), 1831–1843.
Elyasi, I., & Pourmina, M. A. (2016). Reduction of speckle noise ultrasound images based on TV regularization and modified bayes shrink techniques. Optik (Stuttg), 127(24), 11732–11744.
Wang, S., Huang, T.-Z., Zhao, X.-L., Mei, J.-J., & Huang, J. (2018). Speckle noise removal in ultrasound images by first- and second-order total variation. Numerical Algorithms, 78(2), 513–533.
Mei, J. J., Huang, T. Z., Wang, S., & Le Zhao, X. (2018). Second order total generalized variation for speckle reduction in ultrasound images. Journal of the Franklin Institute, 355(1), 574–595.
Goyal, M., & Sekhon, G. S. (2011). Hybrid threshold technique for speckle noise reduction using wavelets for grey scale images. International Journal of Computer Science and Technology, 2(2), 620–625.
Donoho, D. L. (1993). Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data. In Proceedings of symposia in applied mathematics (pp. 173–205).
Rodríguez, P. (2013). Total variation regularization algorithms for images corrupted with different noise models: A review. Journal of Electrical and Computer Engineering, 1, 2013.
Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation noise removal algorithm. Physica D: Nonlinear Phenomena, 60(1–4), 259–268.
Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.
Aujol, J. F., Gilboa, G., Chan, T., & Osher, S. (2006). Structure-texture image decomposition-modeling, algorithms, and parameter selection. International Journal of Computer Vision, 67(1), 111–136.
Hassanpour, H., Samadiani, N., & Mahdi Salehi, S. M. (2015). Using morphological transforms to enhance the contrast of medical images. The Egyptian Journal of Radiology and Nuclear Medicine, 46(2), 481–489.
Kaur, J., Kaur, J., & Kaur, M. (2011). Survey of despeckling techniques for medical ultrasound images. International Journal of Computer Technology and Applications, 2(4), 1003–1007.
Jensen, & Svendsen. (1992). Field II simulation program. [Online]. Available: http://field-ii.dk/examples/ftp_files/. Accessed 05 Oct 2017.
Geertsma, T. S. A. (2011). Ultrasound cases. Ultrasoundcases.Info. [Online]. Available: http://www.ultrasoundcases.info/category.aspx?cat=66. Accessed 28 Aug 2017.
Martin Zukal, P. D. Ing., Radek Beneš, Ing., Petr Číka, Ing., Kamil Říha, Ing. (2011). Ultrasound image database. [Online]. Available: http://splab.cz/en/download/databaze/ultrasound. Accessed: 29 Aug 2017.
Rangaraju, K. S., Kumar, K., & Renumadhavi, C. H. (2012). Review paper on quantitative image quality assessment-medical ultrasound images. International Journal of Engineering, 1(4), 1–6.
Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.
Poobal, S., & Ravindran, G. (2011). The performance of fractal image compression on different imaging modalities using objective quality measures. International Journal of Engineering Science and Technology, 3(1), 525–530.
Xu, S., Liu, X., & Jiang, S. (2015). A fast feature similarity index for image quality assessment. International Journal of Signal Processing, Image Processing and Pattern Recognition, 8(11), 179–194.
Santos, C. A. N., Martins, D. L. N., & Mascarenhas, N. D. A. (2017). Ultrasound Image despeckling using stochastic distance-based BM3D. IEEE Transactions on Image Processing, 26(6), 2632–2643.
Dellepiane, S. G., & Angiati, E. (2014). Quality assessment of despeckled SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2), 691–707.
Nisha, A., & Kumar, S. (2013). Image quality assessment techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 3(7), 636–640.
You, Y. L., & Kaveh, M. (2000). Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 9(10), 1723–1730.
Wang, Y., Chen, W., Zhou, S., Yu, T., & Zhang, Y. (2011). MTV: modified total variation model for image noise removal. IEEE Electronics Letters, 47(10), 592–594.
Goldstein, T., & Osher, S. (2009). The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2(2), 323–343.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rawat, N., Singh, M. & Singh, B. Wavelet and Total Variation Based Method Using Adaptive Regularization for Speckle Noise Reduction in Ultrasound Images. Wireless Pers Commun 106, 1547–1572 (2019). https://doi.org/10.1007/s11277-019-06229-w
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-019-06229-w