Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Metamaterial Based Dual Wideband Wearable Antenna for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact dual wideband metamaterial antenna designed for wearable application is presented in this communication. A metamaterial resonator structure that works as a radiator resonates in dual-band frequencies. The antenna is operated in the frequency spectra of IEEE 802.11 a and b/g/n WLAN, WiMAX 2.3 and 5.5 GHz and GSM 1800 MHz bands. The antenna has wide measured bandwidth from 1.6 to 2.56 GHz (46%) and 4.24 to 7 GHz (49.11%) with average measured gain of 1.6 dB in the lower band and 5 dB in the upper band. The structure of the antenna is examined analytically with different bending dimensions and human body effect. The antenna geometry is fabricated on a jeans material and also measured on different body locations to analyze its performance. The maximum patch dimension of the proposed design is 0.1 λ × 0.1 λ mm2 with respect to the lower band. Excellent agreement is found between the simulated and measured results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bakır, M., Karaaslan, M., Altıntaş, O., Bagmancı, M., Akdogan, V., & Temurtaş, F. (2018). Tunable energy harvesting on UHF bands especially for GSM frequencies. International Journal of Microwave and Wireless Technologies, 10(1), 67–76.

    Article  Google Scholar 

  2. Xu, Z., Lin, W., & Kong, L. (2007). Controllable absorbing structure of metamaterial at microwave. Progress in Electromagnetics Research, 69, 117–125.

    Article  Google Scholar 

  3. Altintas, O., Aksoy, M., Akgol, O., Unal, E., Karaaslan, M., & Sabah, C. (2017). Fluid, strain and rotation sensing applications by using metamaterial based sensor. Journal of the Electrochemical Society, 164(12), B567–B573.

    Article  Google Scholar 

  4. Akgol, O., Altintas, O., Unal, E., Karaaslan, M., & Karadag, F. (2018). Linear to left-and right-hand circular polarization conversion by using a metasurface structure. International Journal of Microwave and Wireless Technologies, 10(1), 133–138.

    Article  Google Scholar 

  5. Raval, F., Purohit, S., & Kosta, Y. P. (2016). Dual-band wearable antenna using split ring resonator. Waves in Random and Complex Media, 26(2), 235–242.

    Article  MathSciNet  Google Scholar 

  6. Yan, S., Soh, P. J., & Vandenbosch, G. A. (2014). Wearable dual-band composite right/left-handed waveguide textile antenna for WLAN applications. Electronics Letters, 50(6), 424–426.

    Article  Google Scholar 

  7. Jiang, Z. H., Brocker, D. E., Sieber, P. E., & Werner, D. H. (2014). A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices. IEEE Transactions on Antennas and Propagation, 62(8), 4021–4030.

    Article  MATH  Google Scholar 

  8. Yan, S., Soh, P. J., & Vandenbosch, G. A. (2015). Compact all-textile dual-band antenna loaded with metamaterial-inspired structure. IEEE Antennas and Wireless Propagation Letters, 14, 1486–1489.

    Article  Google Scholar 

  9. Yan, S., & Vandenbosch, G. A. (2016). Radiation pattern-reconfigurable wearable antenna based on metamaterial structure. IEEE Antennas and Wireless Propagation Letters, 15, 1715–1718.

    Article  Google Scholar 

  10. Bolaños-Torres, M. Á., Torrealba-Meléndez, R., Muñoz-Pacheco, J. M., del Carmen, Goméz-Pavón L., & Tamariz-Flores, E. I. (2018). Multiband flexible antenna for wearable personal communications. Wireless Personal Communications, 100(4), 1753–1764.

    Article  Google Scholar 

  11. Rajkumar, R., & Kiran, K. U. (2016). A compact metamaterial multiband antenna for WLAN/WiMAX/ITU band applications. AEU-International Journal of Electronics and Communications, 70(5), 599–604.

    Article  Google Scholar 

  12. Roy, S., & Chakraborty, U. (2018). Gain enhancement of a dual band WLAN microstrip antenna loaded with diagonal pattern metamaterials. IET Communications, 12(12), 1448–1453. https://doi.org/10.1049/iet-com.2018.0170.

    Article  Google Scholar 

  13. Gao, X. J., Cai, T., & Zhu, L. (2016). Enhancement of gain and directivity for microstrip antenna using negative permeability metamaterial. AEU-International Journal of Electronics and Communications, 70(7), 880–885.

    Article  Google Scholar 

  14. Roy, S., & Chakraborty, U. (2018). Metamaterial-embedded dual wideband microstrip antenna for 2.4 GHz WLAN and 8.2 GHz ITU band applications. Waves in Random and Complex Media, 1–5.

  15. Rezaeieh, S. A., Antoniades, M. A., & Abbosh, A. M. (2016). Compact wideband loop antenna partially loaded with mu-negative metamaterial unit cells for directivity enhancement. IEEE Antennas and Wireless Propagation Letters, 15, 1893–1896.

    Article  MATH  Google Scholar 

  16. Roy, S., Baishnab, K. L., & Chakraborty, U. (2018). Beam focusing compact wideband antenna loaded with mu-negative metamaterial for wireless lan application. Progress in Electromagnetics Research, 83, 33–44.

    Article  Google Scholar 

  17. HFSS ver.14, Ansoft Corporation. Pittsburgh, PA, USA.

  18. Engheta, N., Ziolkowski, R. W. Metamaterials physics and engineering explorations. IEEE press, Wiley inter science, ISBN-13 978-0-471-76102-0.

  19. Sankaralingam, S., & Gupta, B. (2010). Determination of dielectric constant of fabric materials and their use as substrates for design and development of antennas for wearable applications. IEEE Transactions on Instrumentation and Measurement, 59(12), 3122–3130.

    Article  Google Scholar 

  20. Numan, A. B., & Sharawi, M. S. (2013). Extraction of material parameters for metamaterials using a full-wave simulator [education column]. IEEE Antennas and Propagation Magazine, 55(5), 202–211.

    Article  Google Scholar 

  21. Ziolkowski, R. W. (2003). Design, fabrication, and testing of double negative metamaterials. IEEE Transactions on Antennas and Propagation, 51(7), 1516–1529.

    Article  Google Scholar 

  22. Stuchly, M. A., & Stuchly, S. S. (1980). Dielectric properties of biological substances—tabulated. Journal of Microwave Power, 15(1), 19–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Chakraborty, U. Metamaterial Based Dual Wideband Wearable Antenna for Wireless Applications. Wireless Pers Commun 106, 1117–1133 (2019). https://doi.org/10.1007/s11277-019-06206-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06206-3

Keywords

Navigation