Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A novel hybrid range-free approach to locate sensor nodes in 3D WSN using GWO-FA algorithm

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The precise node location of the sensor nodes is an essential requirement in wireless sensor networks (WSNs) to determine the place or event occurring at a particular instant of time. In WSN, existing localization schemes consider two-dimensional (2D) space, while in actual life, sensor nodes are placed in three-dimensional (3D) space. In 3D localization, there are many research challenges, such as higher computational complexity, poor location prediction, lesser coverage, and depending only on fewer anchor nodes. To address various research issues in a 3D environment we propose a range-free technique applied in an anisotropic scenario having degree of irregularity (DOI) as 0.01 using the concepts of a fuzzy logic system (FLS). Anisotropic properties of nodes are considered to determine the efficiency of Grey wolf with the Firefly algorithm. In our proposed scenario, the received signal strength (RSS) information is necessary among the target nodes and their corresponding anchor nodes for determining the location of target nodes using the information based on edge weights. These edge weights are further modeled using Hybrid Grey Wolf Optimization with Firefly Algorithm (GWO-FA) to estimate the location of target nodes. The proposed algorithm is energy efficient as a single location-aware node is used for localization. Further, the concept of virtual anchors is introduced that helps the algorithm to determine 3D positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

(x t, y t):

Target node location for 2D scenarios

(x i, y i):

Location of Anchor node in 2D scenario

(d i,t):

Distance between target nodes and anchor node

x t , y t , z t :

Location of Anchor node in 3D scenario

x c , y c , z c :

Centroid calculation in 3D scenario

s \(({\text{x}}_{{{\text{s}},}} {\text{y}}_{{{\text{s}},{ }}} {\text{z}}_{{{\text{s}},{ }}} )\) :

Estimated coordinates of target node in 3D scenario

s \(x\),\( y\) :

Current location of the anchor node

\(x_{c,} y_{c}\) :

Centroid

s \((x_{s,} y_{s} )\) :

Estimated location of a target node

s \(E_{t}\) :

Error estimation

N t :

Number of target nodes in the WSN deployment

L :

Size of network grid

References

  1. Yang, X.-S. Firefly algorithm, stochastic test functions and design optimisation, arXiv preprint arXiv:1003.1409

  2. Arampatzis, T., Lygeros, J., Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks, In: Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, IEEE, pp. 719–724.

  3. Rongbai, Z., Guohua, C. (2010). Research on major hazard installations monitoring system based on wsn. In: 2nd International Conference on Future Computer and Communication (Vol. 1, pp. V1–741). IEEE

  4. Rodríguez, A., Del-Valle-Soto, C., & Velázquez, R. (2020). Energy-efficient clustering routing protocol for wireless sensor networks based on yellow saddle goatfish algorithm. Mathematics, 8(9), 1515.

    Article  Google Scholar 

  5. Singh, Y., Saha, S., Chugh, U., Gupta, C. (2013). Distributed event detection in wireless sensor networks for forest fires, in: UKS. In: 15th International Conference on Computer Modelling and Simulation, IEEE, pp. 634–639.

  6. Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal processing magazine, 22(4), 54–69.

    Article  Google Scholar 

  7. Bulusu, N., Heidemann, J., & Estrin, D. (2000). ‘GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34.

    Article  Google Scholar 

  8. Gao, G., Lei, L. (2010). An improved node localization algorithm based on DV-HOP in WSN. In: 2nd International Conference on Advanced Computer Control (ICACC), (Vol. 4, pp. 321–324).

  9. Doherty, L., et al. (2001). Convex position estimation in wireless sensor networks. In: Proceeding of INFOCOM (Vol. 3, pp. 1655–1663)

  10. Zhou, Y., Ao, X., Xia, S. (2008). An iimproved APIT node self-localization algorithm in WSN. In: 7th World Congress on Intelligent Control and Automation (WCICA 2008), pp. 7582–7586.

  11. Bachrach, J., Taylor, C. (2005). Localization in sensor networks. In Handbook of Sensor Networks (pp. 277–310).

  12. Teng, R., & Zhang, B. (2010). On-demand information retrieval in sensor networks with localised query and energy-balanced data collection. Sensors, 11(1), 341–361.

    Article  Google Scholar 

  13. Zhang, B., Fan, J., Dai, G., & Luan, T. H. (2015). A hybrid localization approach in 3d wireless sensor network. International Journal of Distributed Sensor Networks, 11(10), 345.

    Google Scholar 

  14. Yun, S., Lee, J., Chung, W., Kim, E., & Kim, S. (2009). A soft computing approach to localization in wireless sensor networks. Expert Systems with Applications, 36(4), 7552–7561.

    Article  Google Scholar 

  15. Xiong, H., & Sichitiu, M. L. (2019). A lightweight localization solution for small, low resources wsns. Journal of Sensor and Actuator Networks, 8(2), 26.

    Article  Google Scholar 

  16. Sivasakthiselvan, S., & Nagarajan, V. (2019). A new localization technique for node positioning in wireless sensor networks. Cluster Computing, 22(2), 4027–4034.

    Article  Google Scholar 

  17. Chen, H., & Tan, G. (2019). Adaptive iteration localization algorithm based on rssi in wireless sensor networks. Cluster Computing, 22(2), 3059–3067.

    Article  Google Scholar 

  18. Nguyen, L. N., Vy, T. D., & Shin, Y. (2019). An efficient hybrid rss-aoa localization for 3d wireless sensor networks. Sensors, 19(9), 2121.

    Article  Google Scholar 

  19. Kumar, A., Khosla, A., Saini, J. S., & Sidhu, S. S. (2015). Range-free 3d node localization in anisotropic wireless sensor networks. Applied Soft Computing, 34, 438–448.

    Article  Google Scholar 

  20. Sharma, G., & Kumar, A. (2018). Fuzzy logic based 3d localization in wireless sensor networks using invasive weed and bacterial foraging optimization. Telecommunication Systems, 67(2), 149–162.

    Article  Google Scholar 

  21. Lee, S., Park, C., Lee, M. J., & Kim, S. (2014). Multihop range-free localization with approximate shortest path in anisotropic wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2014(1), 80.

    Article  Google Scholar 

  22. Chen, Y.-S., Ting, Y.-J., Ke, C.-H., Chilamkruti, N., & Park, J. H. (2013). Efficient localization scheme with ring overlapping by utilizing mobile anchors in wireless sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 12(2), 1–18.

    Article  Google Scholar 

  23. Chaurasiya, V. K., Jain, N., & Nandi, G. C. (2014). A novel distance estimation approach for 3d localization in wireless sensor network using multidimensional scaling. Information Fusion, 15, 5–18.

    Article  Google Scholar 

  24. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  25. Yang, X. S. (2010). Firefly algorithm, levy flights and global optimization’, Research and Development in Intelligent Systems (pp. 209–218).

  26. Janez, B., Mirjam, M. (2019). ‘The 100-digit challenge: Algorithm, pp. 19–26.

  27. Nemer, I., et al. (2021). Performance evaluation of range-free localization algorithms for wireless sensor networks. Personal and Ubiquitous Computing, 25(2021), 177–203.

    Article  Google Scholar 

  28. Karagol, S., & Yildiz, D. (2022). A novel path planning model based on nested regular hexagons for mobile anchor-assisted localization in wireless sensor networks. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-021-06374-0

    Article  Google Scholar 

  29. Kumar, S., Batra, N., & Kumar, S. (2022). Range-free Localization by Optimization in Anisotropic WSN. In Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences (pp. 157–168). Springer

  30. Yu, X., et al. (2021). Inertial optimization MCL deep mine localization algorithm based on grey prediction and artificial bee colony. Wireless Networks, 27(4), 3053–3072.

    Article  Google Scholar 

  31. Ran, X., & Shu, L., Mukherjee, M., Wu, Y., Chen, Y., & Sun, Z. (2018). Impact of irregular radio and faulty nodes on localization in industrial WSNs. https://doi.org/10.1007/978-3-319-72998-5_5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Mittal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Mittal, N. & Singh, P. A novel hybrid range-free approach to locate sensor nodes in 3D WSN using GWO-FA algorithm. Telecommun Syst 80, 303–323 (2022). https://doi.org/10.1007/s11235-022-00888-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00888-0

Keywords

Navigation