Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Directional Metric Regularity, Subregularity and Optimality Conditions for Nonsmooth Mathematical Programs

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

This paper mainly deals with the study of directional versions of metric regularity and metric subregularity for general set-valued mappings between infinite-dimensional spaces. Using advanced techniques of variational analysis and generalized differentiation, we derive necessary and sufficient conditions, which extend even the known results for the conventional metric regularity. Finally, these results are applied to non-smooth optimization problems. We show that that at a locally optimal solution M-stationarity conditions are fulfilled if the constraint mapping is subregular with respect to one critical direction and that for every critical direction a M-stationarity condition, possibly with different multipliers, is fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arutyunov, A.V., Izmailov, A.F.: Directional stability theorem and directional metric regularity. Math. Oper. Res. 31, 526–543 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arutyunov, A.V., Avakov, E.R., Izmailov, A.F.: Directional regularity and metric regularity. SIAM J. Optim. 18, 810–833 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  4. Burke, J.V.: Calmness and exact penalization. SIAM J. Control Optim. 29, 493–497 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dontchev, A.L., Rockafellar, R.T.: Regulartity and conditioning of solution mappings in variatonal anlysis. Set-Valued Anal. 12, 79–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Valued Anal. 18, 121–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flegel, M.L., Kanzow, C., Outrata, J.V.: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints. Set-Valued Anal. 15, 139–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ginchev, I., Mordukhovich, B.S.: On directionally dependent subdifferentials. C. R. Bulg. Acad. Sci. 64, 497–508 (2011)

    MathSciNet  Google Scholar 

  9. Gfrerer, H.: First order and second order characterizations of metric subregularity and calmness of constraint set mappings. SIAM J. Optim. 21, 1439–1474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henrion, R., Jourani, A.: Subdifferential conditions for calmness of convex constraints. SIAM J. Optim. 13, 520–534 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henrion, R., Outrata, J.V.: A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258, 110–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henrion, R., Outrata, J.V.: Calmness of constraint systems with applications. Math. Program., Ser. B 104, 437–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henrion, R., Jourani, A., Outrata, J.V.: On the calmness of a class of multifunctions. SIAM J. Optim. 13, 603–618 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoffman, A.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)

    Article  Google Scholar 

  15. Ioffe, A.D.: Necessary and sufficient conditions for a local minimum 1: a reduction theorem and first order conditions. SIAM J. Control Optim. 17, 245–250 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55, 501–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ioffe, A.D., Outrata, J.V.: On metric and calmness qualification conditions in subdifferential calculus. Set-Valued Anal. 16, 199–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klatte, D., Kummer, B.: Nonsmooth equations in optimization. Regularity, calculus, methods and applications. In: Nonconvex Optimization and its Applications 60. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  19. Klatte, D., Kummer, B.: Optimization methods and stability of inclusions in Banach spaces. Math. Program., Ser. B 117, 305–330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kummer, B.: Inclusions in general spaces: Hoelder stability, solution schemes and Ekeland’s principle. J. Math. Anal. Appl. 358, 327–344 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, G., Mordukhovich, B.S.: Hölder metric subregularity with applications to proximal point method. Preprint (2012, submitted). Available at http://www.optimization-online.org/DB_HTML/2012/02/3340.html

  22. Mordukhovich, B.S.: Coderivatives of set-valued mappings: calculus and applications. Nonlinear Anal. 30, 3059–3070 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mordukhovich, B.S.: Necessary conditions in nonsmooth minimization via lower and upper subgradients. Set-Valued Anal. 12, 163–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, Berlin (2006)

    Google Scholar 

  25. Mordukhovich, B.S., Wang, B.: Restrictive metric regularity and generalized differential calculus in Banach spaces. Int. J. Math. Math. Sci. 50, 2650–2683 (2004)

    MathSciNet  Google Scholar 

  26. Outrata, J.V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24, 627–644 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Penot, J.-P.: Error bounds, calmness and their applications in nonsmooth analysis. In: Leizarowitz, A., Mordukhovich, B.S., Shafrir, I., Zaslavski, A.J. (eds.) Nonlinear Analysis and Optimization II: Optimization. Contemp. Math., vol. 514, pp. 225–248. AMS, Providence (2010)

  28. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Stud. 14, 206–214 (1981)

    Article  MATH  Google Scholar 

  29. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  30. Wu, Z., Ye, J.J.: Sufficient conditions for error bounds. SIAM J. Optim. 12, 421–435 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, Z., Ye, J.J.: First-order and second-order conditions for error bounds. SIAM J. Optim. 14, 621–645 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ye, J.J.: Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints. SIAM J. Optim. 10, 943–962 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ye, J.J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22, 977–997 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zheng, X.Y., Ng, K.F.: Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces. SIAM J. Optim. 18, 437–460 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng, X.Y., Ng, K.F.: Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. SIAM J. Optim. 20, 2119–2136 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Gfrerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gfrerer, H. On Directional Metric Regularity, Subregularity and Optimality Conditions for Nonsmooth Mathematical Programs. Set-Valued Var. Anal 21, 151–176 (2013). https://doi.org/10.1007/s11228-012-0220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-012-0220-5

Keywords

Mathematics Subject Classifications (2010)

Navigation