Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Particle Metropolis–Hastings using gradient and Hessian information

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Particle Metropolis–Hastings (PMH) allows for Bayesian parameter inference in nonlinear state space models by combining Markov chain Monte Carlo (MCMC) and particle filtering. The latter is used to estimate the intractable likelihood. In its original formulation, PMH makes use of a marginal MCMC proposal for the parameters, typically a Gaussian random walk. However, this can lead to a poor exploration of the parameter space and an inefficient use of the generated particles. We propose a number of alternative versions of PMH that incorporate gradient and Hessian information about the posterior into the proposal. This information is more or less obtained as a byproduct of the likelihood estimation. Indeed, we show how to estimate the required information using a fixed-lag particle smoother, with a computational cost growing linearly in the number of particles. We conclude that the proposed methods can: (i) decrease the length of the burn-in phase, (ii) increase the mixing of the Markov chain at the stationary phase, and (iii) make the proposal distribution scale invariant which simplifies tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The data is obtained from the Earthquake Data Base System of the U.S. Geological Survey, which can be accessed at http://earthquake.usgs.gov/earthquakes/eqarchives/.

References

  • Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37(2), 697–725 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Stat. Comput. 18(4), 343–373 (2008)

    Article  MathSciNet  Google Scholar 

  • Andrieu, C., Vihola, M.: Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms. Pre-print arXiv:1012.1484v1 (2011)

  • Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. 72(3), 269–342 (2010)

    Article  MathSciNet  Google Scholar 

  • Beaumont, M.A.: Estimation of population growth or decline in genetically monitored populations. Genetics 164(3), 1139–1160 (2003)

    Google Scholar 

  • Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Carpenter, J., Clifford, P., Fearnhead, P.: Improved particle filter for nonlinear problems. IEE Proc. Radar Sonar Navig. 146(1), 2–7 (1999)

    Article  Google Scholar 

  • Dahlin, J.: Sequential Monte Carlo for inference in nonlinear state space models. Licentiate’s thesis no. 1652, Linköping University (2014)

  • Dahlin, J., Lindsten, F., Schön, T.B.: Particle Metropolis Hastings using Langevin dynamics. In: Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver (2013)

  • Dahlin, J., Lindsten, F., Schön, T.B.: Second-order particle MCMC for Bayesian parameter inference. In: Proceedings of the 19th IFAC World Congress, Cape Town (2014)

  • Del Moral, P.: Feynman-Kac Formulae—Genealogical and Interacting Particle Systems with Applications. Probability and its applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Del Moral, P., Doucet, A., Singh, S.: Forward smoothing using sequential Monte Carlo. Pre-print arXiv:1012.5390v1 (2010)

  • Diaconis, P., Holmes, S., Neal, R.: Analysis of a nonreversible Markov chain sampler. Ann. Appl. Probab. 10(3), 685–1064 (2000)

    MathSciNet  Google Scholar 

  • Doucet, A., Johansen, A.: A tutorial on particle filtering and smoothing: fifteen years later. In: Crisan, D., Rozovsky, B. (eds.) The Oxford Handbook of Nonlinear Filtering. Oxford University Press, Oxford (2011)

    Google Scholar 

  • Doucet, A., Jacob, P., Johansen, A.M.: Discussion on Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. 73(2), 162 (2011)

    Google Scholar 

  • Doucet, A., Pitt, M.K., Deligiannidis, G., Kohn, R.: Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. arXiv.org, Pre-print arXiv:1210.1871v3 (2012)

  • Doucet, A., Jacob, P.E., Rubenthaler, S.: Derivative-free estimation of the score vector and observed information matrix with application to state-space models. Pre-print arXiv:1304.5768v2 (2013)

  • Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195(2), 216–222 (1987)

    Article  Google Scholar 

  • Everitt, R.G.: Bayesian parameter estimation for latent Markov random fields and social networks. J. Comput. Gr. Stat. 21(4), 940–960 (2012)

    Article  MathSciNet  Google Scholar 

  • Flury, T., Shephard, N.: Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econom. Theory 27(5), 933–956 (2011)

  • Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. 73(2), 1–37 (2011)

  • Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1(6), 807–820 (2011)

  • Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. Radar Signal Process. 140(2), 107–113 (1993)

    Article  Google Scholar 

  • Kitagawa, G., Sato, S.: Monte Carlo smoothing and self-organising state-space model. In: Doucet, A., de Fretias, N., Gordon, N. (eds.) Sequential Monte Carlo methods in practice, pp. 177–195. Springer, Berlin (2001)

    Chapter  Google Scholar 

  • Langrock, R.: Some applications of nonlinear and non-Gaussian state-space modelling by means of hidden Markov models. J. Appl. Stat. 38(12), 2955–2970 (2011)

    Article  MathSciNet  Google Scholar 

  • Neal, R.M.: MCMC using Hamiltonian dynamics. In: Brooks, S., Gelman, A., Jones, G., Meng, X.L. (eds.) Handbook of Markov Chain Monte Carlo. Chapman & Hall, London (2010)

    Google Scholar 

  • Nemeth, C., Fearnhead, P.: Particle Metropolis adjusted Langevin algorithms for state-space models. Pre-print arXiv:1402.0694v1 (2014)

  • Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Olsson, J., Cappé, O., Douc, R., Moulines, E.: Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models. Bernoulli 14(1), 155–179 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Peters, G.W., Hosack, G.R., Hayes, K.R.: Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo. Pre-print arXiv:1005.2238v1 (2010)

  • Pitt, M.K., Shephard, N.: Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–599 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Pitt, M.K., Silva, R.S., Giordani, P., Kohn, R.: On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econom. 171(2), 134–151 (2012)

    Article  MathSciNet  Google Scholar 

  • Poyiadjis, G., Doucet, A., Singh, S.S.: Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98(1), 65–80 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Rauch, H.E., Tung, F., Striebel, C.T.: Maximum likelihood estimates of linear dynamic systems. AIAA J. 3(8), 1445–1450 (1965)

    Article  MathSciNet  Google Scholar 

  • Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 60(1), 255–268 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, G.O., Stramer, O.: Langevin diffusions and Metropolis–Hastings algorithms. Methodol. Comput. Appl. Probab. 4(4), 337–357 (2003)

    Article  MathSciNet  Google Scholar 

  • Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7(1), 110–120 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Sherlock, C., Thiery, A.H., Roberts, G.O., Rosenthal, J.S. On the efficency of pseudo-marginal random walk Metropolis algorithms. Pre-print arXiv:1309.7209v1 (2013)

Download references

Acknowledgments

This work was supported by: Learning of complex dynamical systems (Contract number: 637-2014-466) and Probabilistic modeling of dynamical systems (Contract number: 621-2013-5524) and CADICS, a Linnaeus Center, all funded by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Dahlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlin, J., Lindsten, F. & Schön, T.B. Particle Metropolis–Hastings using gradient and Hessian information. Stat Comput 25, 81–92 (2015). https://doi.org/10.1007/s11222-014-9510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-014-9510-0

Keywords

Navigation