Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Waiting times for M/M systems under state-dependent processor sharing

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a system where the arrivals form a Poisson process and the required service times of the requests are exponentially distributed. The requests are served according to the state-dependent (Cohen’s generalized) processor sharing discipline, where each request in the system receives a service capacity which depends on the actual number of requests in the system. For this system we derive systems of ordinary differential equations for the LST and for the moments of the conditional waiting time of a request with given required service time as well as a stable and fast recursive algorithm for the LST of the second moment of the conditional waiting time, which in particular yields the second moment of the unconditional waiting time. Moreover, asymptotically tight upper bounds for the moments of the conditional waiting time are given. The presented numerical results for the first two moments of the sojourn times in M/M/mPS systems show that the proposed algorithms work well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avi-Itzhak, B., Halfin, S.: Response times in gated M/G/1 queues: The processor-sharing case. Queueing Syst. 4, 263–279 (1989)

    Article  Google Scholar 

  2. Avrachenkov, K., Ayesta, U., Brown, P.: Batch arrival processor-sharing with application to multi-level processor-sharing scheduling. Queueing Syst. 50, 459–480 (2005)

    Article  Google Scholar 

  3. Bonald, T., Proutière, A.: Insensitivity in processor-sharing networks. Perform. Eval. 49, 193–209 (2002)

    Article  Google Scholar 

  4. Borst, S., Boxma, O., Jelenkovic, P.: Reduced-load equivalence and induced burstiness in GPS queues with long-tailed traffic flows. Queueing Syst. 43, 273–306 (2003a)

    Article  Google Scholar 

  5. Borst, S., Mandjes, M., van Uitert, M.: Generalized processor sharing queues with heterogeneous traffic classes. Adv. Appl. Probab. 35, 806–845 (2003b)

    Article  Google Scholar 

  6. Braband, J.: Wartezeitverteilungen für M/M/N-Processor-Sharing-Modelle. Ph.D. Thesis, Technical University at Brunswick (1992)

  7. Braband, J.: Waiting time distributions for M/M/N processor sharing queues. Commun. Stat. Stoch. Models 10, 533–548 (1994)

    Article  Google Scholar 

  8. Brandt, A., Brandt, M.: On the sojourn times for many-queue head-of-the-line processor-sharing systems with permanent customers. Math. Methods Oper. Res. 47, 181–220 (1998)

    Article  Google Scholar 

  9. Brandt, A., Brandt, M.: A note on the stability of the many-queue head-of-the-line processor-sharing system with permanent customers. Queueing Syst. 32, 363–381 (1999)

    Article  Google Scholar 

  10. Brandt, A., Brandt, M.: A sample path relation for the sojourn times in G/G/1−PS systems and its applications. Queueing Syst. 52, 281–286 (2006)

    Article  Google Scholar 

  11. Brandt, A., Brandt, M.: On the stability of the multi-queue multi-server processor sharing with limited service. Queueing Syst. 56, 1–8 (2007)

    Article  Google Scholar 

  12. Cheung, S.-K., van den Berg, H., Boucherie, R.J.: Insensitive bounds for the moments of the sojourn time distribution in the M/G/1 processor-sharing queue. Queueing Syst. 53, 7–18 (2006)

    Article  Google Scholar 

  13. Coffman, E.G., Muntz, R.R., Trotter, H.: Waiting time distributions for processor-sharing systems. J. Assoc. Comput. Mach. 17, 123–130 (1970)

    Google Scholar 

  14. Cohen, J.W.: The multiple phase service network with generalized processor sharing. Acta Inf. 12, 245–284 (1979)

    Google Scholar 

  15. Elwalid, A., Mitra, D.: Design of generalized processor sharing schedulers which statistically multiplex heterogeneous QoS classes. INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE 3, pp. 1220–1230 (1999)

  16. Guillemin, F., Robert, P., Zwart, B.: Tail asymptotics for processor-sharing queues. Adv. Appl. Probab. 36, 525–543 (2004)

    Article  Google Scholar 

  17. Kitaev, M.Y., Yashkov, S.F.: Distribution of the conditional sojourn time of requests in shared-processor systems. Izv. Akad. Nauk SSSR Tekh. Kibernet. 4, 211–215 (1978)

    Google Scholar 

  18. Kleinrock, L.: Time-shared systems: A theoretical treatment. J. Assoc. Comput. Mach. 14, 242–261 (1967)

    Google Scholar 

  19. Massoulié, L., Roberts, J.W.: Bandwidth sharing and admission control for elastic traffic. Telecommun. Syst. 15, 185–201 (2000)

    Article  Google Scholar 

  20. Morrison, J.A.: Response-time distribution for a processor-sharing system. SIAM J. Appl. Math. 45, 152–167 (1985)

    Article  Google Scholar 

  21. Morrison, J.A.: Head of the line processor sharing for many symmetric queues with finite capacity. Queueing Syst. 14, 215–237 (1993)

    Article  Google Scholar 

  22. Núñez Queija, R.: Processor-sharing models for integrated-services networks. Ph.D. Thesis, Eindhoven University of Technology (2000)

  23. Parekh, A.K., Gallager, R.G.: A generalized processor sharing approach to flow control in integrated services networks: the single-node case. IEEE/ACM Trans. Netw. 1(3), 344–357 (1993)

    Article  Google Scholar 

  24. Rege, K.M., Sengupta, B.: A single server queue with gated processor-sharing discipline. Queueing Syst. 4, 249–261 (1989)

    Article  Google Scholar 

  25. Sengupta, B., Jagerman, D.L.: A conditional response time of M/M/1 processor-sharing queue. AT&T Bell Lab. Techn. J. 64, 409–421 (1985)

    Google Scholar 

  26. Sericola, B., Guillemin, F., Boyer, J.: Sojourn times in the M/PH/1 processor sharing queue. Queueing Syst. 50, 109–130 (2005)

    Article  Google Scholar 

  27. Tolmachev, A.L.: Insensitivity in queueing networks with generalized processor-sharing discipline. Probability theory and applications, Proc. World Congr. Bernoulli Soc., Tashkent 1986, vol. 1, pp. 283–286 (1987)

  28. van den Berg, J.L., Boxma, O.J.: The M/G/1 queue with processor sharing and its relation to a feedback queue. Queueing Syst. 9, 365–401 (1991)

    Article  Google Scholar 

  29. Yashkov, S.F.: Processor-sharing queues: Some progress in analysis. Queueing Syst. 2, 1–17 (1987)

    Article  Google Scholar 

  30. Yashkov, S.F.: Mathematical problems in the theory of shared-processor systems. Itogi Nauki Tekh., Ser. Teor. Veroyatn. Mat. Sta. Teor. Kibern. 29, 3–82 (1990)

    Google Scholar 

  31. Yashkov, S.F., Kitaev, M.Y.: One analytical model of shared-use systems. Autom. Control Comput. Sci. 14, 20–23 (1980) (translation from Avtom. Vychisl. Tekh. 1, 22–25 (1980))

    Google Scholar 

  32. Yashkova, A.S., Yashkov, S.F.: Distribution of the virtual sojourn time in the M/G/1 processor sharing queue. Inf. Process. 3(2), 128–137 (2003)

    Google Scholar 

  33. Zhang, Z.L., Towsley, D., Kurose, J.: Statistical analysis of generalized processor sharing scheduling discipline. ACM SIGCOMM Comput. Commun. Rev. 24(4), 68–77 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Brandt.

Additional information

This work was supported by a grant from the Siemens AG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, A., Brandt, M. Waiting times for M/M systems under state-dependent processor sharing. Queueing Syst 59, 297–319 (2008). https://doi.org/10.1007/s11134-008-9086-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-008-9086-5

Keywords

Mathematics Subject Classification (2000)

Navigation