Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Quantum privacy and quantum wiretap channels

  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

Following Schumacher and Westmoreland, we address the problem of the capacity of a quantum wiretap channel. We first argue that, in the definition of the so-called “quantum privacy,” Holevo quantities should be used instead of classical mutual informations. The argument actually shows that the security condition in the definition of a code should limit the wiretapper’s Holevo quantity. Then we show that this modified quantum privacy is the optimum achievable rate of secure transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Holevo, A.S., Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel, Probl. Peredachi Inf., 1973, vol. 9, no. 3, pp. 3–11 [Probl. Inf. Trans. (Engl. Transl.), 1973, vol. 9, no. 3, pp. 177–183].

    Google Scholar 

  2. von Neumann, J., Thermodynamik quantenmechanischer Gesamtheiten, Nachr. der Gesellschaft der Wiss. Gött., 1927, pp. 273–294.

  3. Shannon, C.E., A Mathematical Theory of Communication, Bell Syst. Tech. J., 1948, vol. 27, no. 3, pp. 379–423; no. 4, pp. 623–656.

    Google Scholar 

  4. Holevo, A.S., The Capacity of a Quantum Channel with General Signal States, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 1, pp. 269–273.

    Google Scholar 

  5. Schumacher, B. and Westmoreland, M.D., Sending Classical Information via Noisy Quantum Channels, Phys. Rev. A, 1997, vol. 56, no. 1, pp. 131–138.

    Google Scholar 

  6. Winter, A., Coding Theorem and Strong Converse for Quantum Channels, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 7, pp. 2481–2485.

    Google Scholar 

  7. Holevo, A.S., Coding Theorems for Quantum Channels, LANL e-print quant-ph/9809023, 1998.

  8. Schumacher, B. and Westmoreland, M.D., Relative Entropy in Quantum Information Theory, LANL e-print quant-ph/0004045, 2000.

  9. Shannon, C.E., Communication Theory of Secrecy Systems, Bell Syst. Tech. J., 1949, vol. 28, no. 4, pp. 656–715.

    Google Scholar 

  10. Wyner, A.D., The Wire-tap Channel, Bell Syst. Tech. J., 1975, vol. 54, no. 8, pp. 1355–1387.

    Google Scholar 

  11. Csiszàr, I. and Körner, J., Broadcast Channels with Confidential Messages, IEEE Trans. Inform. Theory, 1978, vol. 24, no 3, pp. 339–348.

    Google Scholar 

  12. Ahlswede, R. and Csiszàr, I., Common Randomness in Information Theory and Crytography—Part I: Secret Sharing, IEEE Trans. Inform. Theory, 1993, vol. 39, no. 4, pp. 1121–1132.

    Google Scholar 

  13. Maurer, U.M., Secret Key Agreement by Public Discussion Based on Common Information, IEEE Trans. Inform. Theory, 1993, vol. 39, no. 3, pp. 733–742.

    Google Scholar 

  14. Cai, N. and Lam, K.Y., How to Broadcast Privacy: Secret Coding for Derministic Broadcast Channels, Numbers, Information, and Complexity, Althöfer, I., Cai, N., Dueck, G., Khachatrian, L., Pinsker, M., Sarkozy, A., Wegener, I., and Zhang, Z., Eds., Boston: Kluwer, 2000, pp. 353–368.

    Google Scholar 

  15. Schumacher, B. and Westmoreland, M.D., Quantum Privacy and Quantum Coherence, Phys. Rev. Lett., 1998, vol. 80, no. 25, pp. 5695–5697.

    Google Scholar 

  16. DiVincenzo, D.P., Shor, P.W., and Smolin, J.A., Quantum-Channel Capacity of Very Noisy Channels, Phys. Rev. A, 1998, vol. 57, no. 2, pp. 830–839.

    Google Scholar 

  17. Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ. Press, 2000.

    Google Scholar 

  18. Csiszàr, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memoryless Systems, Budapest: Akademiai Kiado, 1981. Translated under the title Teoriya informatsii: teoremy kodirovaniya dlya diskretnykh sistem bez pamyati, Moscow: Mir, 1985.

    Google Scholar 

  19. Cover, T.M. and Thomas, J.A., Elements of Information Theory, New York: Wiley, 1991.

    Google Scholar 

  20. Yeung, R.W., A First Course in Information Theory, New York: Kluwer, 2002.

    Google Scholar 

  21. DiVincenzo, D.P., Horodecki, M., Leung, D.W., Smolin, J.A., and Terhal, B.M., Locking Classical Correlation in Quantum States, LANL e-print quant-ph/0303088, 2003.

  22. Löber, P., Quantum Channels and Simultaneous ID Coding, Doctoral Dissertation, Bielefeld: Universität Bielefeld, 1999. Available at http://archiv.ub.uni-bielefeld.de/disshabi/mathe.htm.

    Google Scholar 

  23. Ahlswede, R. and Dueck, G., Identification via Channels, IEEE Trans. Inform. Theory, 1989, vol. 35, no. 1, pp. 15–29.

    Google Scholar 

  24. Ahlswede, R. and Winter, A., Strong Converse for Identification via Quantum Channels, IEEE Trans. Inf. Theory, 2002, vol. 48, no. 3, pp. 569–579. Addendum: IEEE Trans. Inf. Theory, 2003, vol. 49, no. 1, p. 346.

    Google Scholar 

  25. Elias, P., List Decoding for Noisy Channels, 1957 IRE Wescon Convention Record, Part 2, 1957, pp. 94–104.

  26. Ahlswede, R., Channel Capacities for List Codes, J. Appl. Probab., 1973, vol. 10, no. 4, pp. 824–836.

    Google Scholar 

  27. Arikan, E., An Inequality on Guessing and Its Application to Sequential Decoding, IEEE Trans. Inform. Theory, 1996, vol. 42, no. 1, pp. 99–105.

    Google Scholar 

  28. Csiszàr, I, Almost Independence and Secrecy Capacity, Probl. Peredachi Inf., 1996, vol. 32, no. 1, pp. 48–57 [Probl. Inf. Trans. (Engl. Transl.), 1996, vol. 32, no. 1, pp. 40–47].

    Google Scholar 

  29. Fannes, M., A Continuity Property of the Entropy Density for Spin Lattice Systems, Comm. Math. Phys., 1973, vol. 31, pp. 291–294.

    Google Scholar 

  30. Devetak, I., The Private Classical Information Capacity and Quantum Information Capacity of a Quantum Channel, LANL e-print quant-ph/0304127, 2003.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, No. 4, 2004, pp. 26–47. Original Russian Text Copyright © 2004 by Cai, Winter, Yeung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, N., Winter, A. & Yeung, R.W. Quantum privacy and quantum wiretap channels. Probl Inf Transm 40, 318–336 (2004). https://doi.org/10.1007/s11122-004-0002-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11122-004-0002-2

Navigation