Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An accurate Legendre collocation method for third-kind Volterra integro-differential equations with non-smooth solutions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This work is to analyze a Legendre collocation approximation for third-kind Volterra integro-differential equations. The rigorous error analysis in the \(L^{\infty }\) and \(L_{\omega ^{0,0}}^{2}\)-norms is provided for the proposed method. In fact when converting the original equation to an equivalent second kind one, the integral operator of the obtained equation contains two singularities and may become non-compact under certain conditions. In addition, in order to avoid the low-order accuracy caused by the singularity of the solution at the initial point, we adopted the idea of smooth transformation at the beginning to convert the original equation into a new equation with a more regular solution. Finally, the validity and applicability of the method are verified by several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ali, I.: Convergence analysis of spectral methods for integro-differential equations with vanishing proportional delays. J. Comput. Math. 29(1), 49–60 (2011)

    Article  MathSciNet  Google Scholar 

  2. Ali, I., Brunner, H., Tang, T.: A spectral method for pantograph-type delay differential equations and its convergence analysis. J. Comput. Math. 27(2-3), 254–265 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Ali, I., Brunner, H., Tang, T.: Spectral methods for pantograph-type differential and integral equations with multiple delays. Front. Math. China 4(1), 49–61 (2009). https://doi.org/10.1007/s11464-009-0010-z

    Article  MathSciNet  Google Scholar 

  4. Allaei, S. S., Yang, Z., Brunner, H.: Existence, uniqueness and regularity of solutions for a class of third kind volterra integral equations. J. Integral Equ. Appl. (2015)

  5. Allaei, S. S., Yang, Z. W., Brunner, H.: Collocation methods for third-kind VIEs. IMA. J. Numer. Anal. 37(3), 1104–1124 (2017). https://doi.org/10.1093/imanum/drw033

    MathSciNet  MATH  Google Scholar 

  6. Cai, H.: Legendre-Galerkin methods for third kind VIEs and CVIEs. J. Sci. Comput. 83(1), Paper No. 3, 18. https://doi.org/10.1007/s10915-020-01187-z (2020)

  7. Chen, Y., Li, X., Tang, T.: A note on Jacobi spectral-collocation methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Math. 31(1), 47–56 (2013). https://doi.org/10.4208/jcm.1208-m3497

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Li, X., Tang, T.: A note on Jacobi spectral-collocation methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Math. 31(1), 47–56 (2013). https://doi.org/10.4208/jcm.1208-m3497

    Article  MathSciNet  Google Scholar 

  9. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comp. 79(269), 147–167 (2010). https://doi.org/10.1090/S0025-5718-09-02269-8

    Article  MathSciNet  Google Scholar 

  10. Costarelli, D., Spigler, R.: A collocation method for solving nonlinear Volterra integro-differential equations of neutral type by sigmoidal functions. J. Integr. Equ. Appl. 26(1), 15–52 (2014). https://doi.org/10.1216/JIE-2014-26-1-15

    Article  MathSciNet  Google Scholar 

  11. Evans, G. C.: Volterra’s integral equation of the second kind, with discontinuous kernel. II. Trans. Amer. Math. Soc. 12(4), 429–472 (1911). https://doi.org/10.2307/1988789

    MathSciNet  MATH  Google Scholar 

  12. Jiang, Y., Ma, J.: Spectral collocation methods for Volterra-integro differential equations with noncompact kernels. J. Comput. Appl. Math. 244, 115–124 (2013). https://doi.org/10.1016/j.cam.2012.10.033

    Article  MathSciNet  Google Scholar 

  13. Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 38(4), 1434–1448 (2014). https://doi.org/10.1016/j.apm.2013.08.013

    Article  MathSciNet  Google Scholar 

  14. Mokhtary, P.: Reconstruction of exponentially rate of convergence to Legendre collocation solution of a class of fractional integro-differential equations. J. Comput. Appl. Math. 279, 145–158 (2015). https://doi.org/10.1016/j.cam.2014.11.001

    Article  MathSciNet  Google Scholar 

  15. Pedas, A., Tamme, E., Vikerpuur, M.: Numerical solution of linear fractional weakly singular integro-differential equations with integral boundary conditions. Appl. Numer. Math. 149, 124–140 (2020). https://doi.org/10.1016/j.apnum.2019.07.014

    Article  MathSciNet  Google Scholar 

  16. Seyed Allaei, S., Diogo, T., Rebelo, M.: The jacobi collocation method for a class of nonlinear Volterra integral equations with weakly singular kernel. J. Sci. Comput. 69(2), 673–695 (2016). https://doi.org/10.1007/s10915-016-0213-x

    Article  MathSciNet  Google Scholar 

  17. Shayanfard, F., Laeli Dastjerdi, H., Maalek Ghaini, F. M.: A numerical method for solving Volterra integral equations of the third kind by multistep collocation method. Comput. Appl. Math. 38(4), Paper No. 174, 13. https://doi.org/10.1007/s40314-019-0947-9 (2019)

  18. Shayanfard, F., Laeli Dastjerdi, H., Maalek Ghaini, F. M.: Collocation method for approximate solution of Volterra integro-differential equations of the third-kind. Appl. Numer. Math. 150, 139–148 (2020). https://doi.org/10.1016/j.apnum.2019.09.020

    Article  MathSciNet  Google Scholar 

  19. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analyses and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2011)

    Book  Google Scholar 

  20. Shi, X., Wei, Y., Huang, F.: Spectral collocation methods for nonlinear weakly singular Volterra integro-differential equations. Numer. Methods Partial Differ. Equ. 35(2), 576–596 (2019). https://doi.org/10.1002/num.22314

    Article  MathSciNet  Google Scholar 

  21. Sohrabi, S., Ranjbar, H., Saei, M.: Convergence analysis of the Jacobi-collocation method for nonlinear weakly singular Volterra integral equations. Appl. Math. Comput. 299, 141–152 (2017). https://doi.org/10.1016/j.amc.2016.11.022

    MathSciNet  MATH  Google Scholar 

  22. Song, H., Yang, Z., Brunner, H.: Analysis of collocation methods for nonlinear Volterra integral equations of the third kind. Calcolo 56(1), Paper No. 7, 29. https://doi.org/10.1007/s10092-019-0304-9 (2019)

  23. Taheri, Z., Javadi, S., Babolian, E.: Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method. J. Comput. Appl. Math. 321, 336–347 (2017). https://doi.org/10.1016/j.cam.2017.02.027

    Article  MathSciNet  Google Scholar 

  24. Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Vainikko, G.: First kind cordial Volterra integral equations 1. Numer. Funct. Anal. Optim. 33(6), 680–704 (2012). https://doi.org/10.1080/01630563.2012.665260

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and helpful suggestions which led to an improved version of the paper.

Funding

This work was supported by NSF of China (Nos.11801127, 11771163, and 12011530058) and Scientific Research Foundation of Hunan Provincial Education Department (No.20C0081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Huang, C. An accurate Legendre collocation method for third-kind Volterra integro-differential equations with non-smooth solutions. Numer Algor 88, 1571–1593 (2021). https://doi.org/10.1007/s11075-021-01086-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01086-w

Keywords

Navigation