Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Application of Sinc-Galerkin method to singularly perturbed parabolic convection-diffusion problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We develop a numerical algorithm for solving singularly perturbed one-dimensional parabolic convection-diffusion problems. The method comprises a standard finite difference to discretize in temporal direction and Sinc-Galerkin method in spatial direction. The convergence analysis and stability of proposed method are discussed in details, it is justifying that the approximate solution converges to the exact solution at an exponential rate. we know that the conventional methods for these problems suffer due to decreasing of perturbation parameter, but the Sinc method handel such difficulty as singularity. This scheme applied on some test examples, the numerical results illustrate the efficiency of the method and confirm the theoretical behavior of the rates of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bialecki, B.: Sinc-collocation methods for two-point boundary value problems. IMA J. Numer. Anal. 11, 357–375 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cai, X., Liu, F.: A Reynolds uniform scheme for singularly perturbed parabolic differential equation. ANZIAM J. 47(EMAC–2005), C633–C648 (2007)

    MathSciNet  Google Scholar 

  3. Clavero, C., Jorge, J.C., Lisbona, F.: Uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems. J. Comput. Appl. Math. 154, 415–429 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Clavero, C., Gracia, J.L., Stynes, M.: A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems. J. Comput. Appl. Math. 235, 5240–5248 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clavero, C., Gracia, J.L., Lisbona, F.: High order methods on Shishkin meshes for singular perturbation problems of convection-diffusion type. Numer. Algoritm. 22, 73–97 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clavero, C., Gracia, J.L.: A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reactiondiffusion problems. Appl. Math. Comput. 218, 5067–5080 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deb, R., Natesan, S.: Higher-order time accurate numerical methods for singularly perturbed parabolic partial differential equations. Int. J. Comput. Math. 86(7), 1204–1214 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. El-Gamel, M.: The sinc-galerkin method for solving singularly-perturbed reaction-diffusion problem. Electron. Trans. Numer. Anal. 23, 129–140 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Kadalbajoo, M.K., Gupta, V., Awasthi, A.: A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection-diffusion problem. J. Comput. Appl. Math. 220, 271–289 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kadalbajoo, M.K., Gupta, V.: Numerical solution of singularly perturbed convection-diffusion problem using parameter uniform B-spline collocation method. J. Math. Anal. Appl 355, 439–452 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  12. Mukherjee, K., Natesan, S.: Richardson extrapolation technique for singularly perturbed parabolic convection-diffusion problems,Computing 92, 1–32 (2011)

    MATH  MathSciNet  Google Scholar 

  13. Mukherjee, K., Natesan, S.: Parameter-uniform hybrid numerical scheme for time-dependent convection-dominated initial-boundary-value problems. Computing 84(3–4), 209–230 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nurmuhammada, A., Muhammada, M., Moria, M., Sugiharab, M.: Double exponential transformation in the Sinc-collocation method for a boundary value problem with fourth-order ordinary differential equation. J. Comput. Appl. Math. 182, 32–50 (2005)

    Article  MathSciNet  Google Scholar 

  15. Okayama, T., Matsuo, T., Masaaki Sugihara, M.: Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind. J. Comput. Appl. Math. 234, 1211–1227 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. O’Riordan, E., Pickett, M.L., Shishkin, G.I.: Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems. Math. Comput. 75(255), 1135–1154 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rashidinia, J., Zarebnia, M.: Convergence of approximate solution of system of Fredholm integral equations. J. Math. Anal. Appl. 333, 1216–1227 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ramos, J.I.: An exponentially fitted method for singularly perturbed one-dimentional parabolic problems. Appl. Math. Comput. 161, 513–523 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  20. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)

    Book  MATH  Google Scholar 

  21. Saadatmandi, A., Dehghan, M.: The use of Sinc-collocation method for solving multi-point boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 17(2), 593–601 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zarebnia, M., Rashidinia, J.: Approximate solution of systems of Volterra integral equations with error analysis. Int. J. Comput. Math. 87(13), 3052–3062 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rashidinia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashidinia, J., Barati, A. & Nabati, M. Application of Sinc-Galerkin method to singularly perturbed parabolic convection-diffusion problems. Numer Algor 66, 643–662 (2014). https://doi.org/10.1007/s11075-013-9752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9752-5

Keywords

Mathematics Subject Classifications (2010)

Navigation