Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Nonlinear energy sink to control elastic strings: the internal resonance case

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The use of nonlinear energy sink as a passive control device is extended here to a nonlinear elastic string, in internal resonance conditions, excited by an external harmonic force. The Multiple Scale/Harmonic Balance Method is directly applied to the partial differential equations ruling the dynamics of the system. The internal resonance condition of the string involves a rich response containing essentially both the resonant, directly excited, mode and a superharmonic one. Numerical results on a case study are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gattulli, V., Di Fabio, F., Luongo, A.: Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers. J. Frankl. Inst. 338, 187–201 (2001)

    Article  MATH  Google Scholar 

  2. Gattulli, V., Di Fabio, F., Luongo, A.: One to one resonant double Hopf bifurcation in aeroelastic oscillators with tuned mass dampers. J. Sound Vib. 262, 201–217 (2003)

    Article  Google Scholar 

  3. Gattulli, V., Di Fabio, F., Luongo, A.: Nonlinear Tuned Mass Damper for self-excited oscillations. Wind Struct. 7, 251–264 (2004)

    Article  Google Scholar 

  4. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, New York (2008)

    MATH  Google Scholar 

  5. Manevitch, L.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: Description of response regimes. Nonlinear Dyn. 51, 31–46 (2008)

    Article  MATH  Google Scholar 

  7. Starosvetsky, Y., Gendelman, O.V.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312, 234–256 (2008)

    Article  Google Scholar 

  8. Vaurigaud, B., Manevitch, L.I., Lamarque, C.-H.: Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib. 330, 2580–2595 (2011)

    Article  Google Scholar 

  9. Gendelman, O.V., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math. 70(5), 1655–1677 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Costa, S.N.J., Hassmann, C.H.G., Balthazar, J.M., Dantas, M.J.H.: On energy transfer between vibrating systems under linear and nonlinear interactions. Nonlinear Dyn. 57, 57–67 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dantas, M.J.H., Balthazar, J.M.: On energy transfer between linear and nonlinear oscillators. J. Sound Vib. 315, 1047–1070 (2008)

    Article  Google Scholar 

  12. Felix, J.L.P., Balthazar, J.M., Dantas, M.J.H.: On energy pumping, synchronization and beat phenomenon in a nonideal structure coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 56, 1–11 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tusset, A.M., Balthazar, J.M., Chavarette, F.R., Felix, J.L.P.: On energy transfer phenomena, in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-rheological damper. Nonlinear Dyn. 69, 1859–1880 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Panagopoulos, P., Georgiades, F., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A.: Multi-scaled analysis of the damped dynamics of an elastic rod with an essentially nonlinear end attachment. Int. J. Solids Struct. 44, 6256–6278 (2007)

    Article  MATH  Google Scholar 

  15. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12, 643–651 (2007)

    Article  MATH  Google Scholar 

  16. Georgiades, F., Vakakis, A.F., Kerschen, G.: Broadband passive targeted energy pumping from a linear dispersive rod to a lightweight essentially non-linear end attachment. Int. J. Non-Linear Mech. 42, 773–788 (2007)

    Article  Google Scholar 

  17. Nili Ahmadabadi, Z., Khadem, S.E.: Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Mach. Theory 50, 134–149 (2012)

    Article  Google Scholar 

  18. Georgiades, F., Vakakis, A.F.: Passive targeted energy transfers and strong modal interactions in the dynamics of a thin plate with strongly nonlinear attachments. Int. J. Solids Struct. 46, 2330–2353 (2009)

    Article  MATH  Google Scholar 

  19. Zhang, Y.-W., Zang, J., Yang, T.-Z., Fang, B., Wen, X.: Vibration suppression of an axially moving string with transverse wind loadings by a nonlinear energy sink. Math. Probl. Eng. (2013). doi:10.1155/2013/348042

  20. Malatkar, P., Nayfeh, A.H.: Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 47, 167–179 (2007)

    Article  MATH  Google Scholar 

  21. Mehmood, A., Nayfeh, A.H., Hajj, M.R.: Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder. Nonlinear Dyn. 77, 667–680 (2014)

    Article  Google Scholar 

  22. Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn. 70(3), 2049–2061 (2012)

    Article  MathSciNet  Google Scholar 

  23. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed Multiple Scale/Harmonic Balance Method. J. Vib. Control 20(13), 1985–1998 (2014)

    Article  Google Scholar 

  24. Gourc, E., Seguy, S., Michon, G., Berlioz, A.: Chatter control in turning process with a nonlinear energy sink. Diffus. Defect Data Pt.B Solid State Phenom. 201, 89–98 (2013)

    Google Scholar 

  25. Bab, S., Khadem, S.A., Shahgholi, M.: Lateral vibration attenuation of a rotor under mass eccentricity force using nonlinear energy sink. Int. J. Non-Linear Mech. (2014). doi:10.1016/j.ijnonlinmec.2014.08.016

  26. Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Meccanica 50, 781–794 (2015)

    Article  MathSciNet  Google Scholar 

  27. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  28. Nayfeh, S.A., Nayfeh, A.H., Mook, D.T.: Nonlinear response of a taut string to longitudinal and transverse end excitation. J. Vib. Control 1(3), 307–334 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34, 901–924 (1999)

    Article  Google Scholar 

  30. Lacarbonara, W.: Direct treatment and discretizations of non-linear spatially continuous systems. J. Sound Vib. 221, 849–866 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nayfeh, A.H., Nayfeh, S.A., Pakdemirli, M.: On the discretization of weakly nonlinear spatially continuous systems. In: Kliemann, W., Sri Namachchivaya, N. (eds.), Nonlinear Dynamics and Stochastic Mechanics, pp. 175–200. CRC Press, Boca Raton (1995)

  32. Luongo, A., Zulli, D.: Mathematical Models of Beams and Cables. Iste-Wiley, ISBN 9781848214217 (2013)

  33. Doedel, E.J., Oldeman, B.E.: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equation (2012). http://cmvl.cs.concordia.ca/auto/

  34. Wolfram Research Inc.: Mathematica, Version 9.0. Wolfram Research Inc., Champaign (2012)

  35. Ni, Y.Q., Wang, X.Y., Chen, Z.Q., Ko, J.M.: Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge. J. Wind Eng. Ind. Aerodyn. 95, 303–328 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Luongo.

Additional information

This work has been supported by the Italian Ministry of University (MIUR) through a PRIN 2010–2012 program (2010MBJK5B).

Appendix: Coefficients of the equations

Appendix: Coefficients of the equations

The expression of the right-hand sides of Eq. (31) is:

$$\begin{aligned} \mathcal {F}_1= & {} -\,\frac{\zeta }{2}a_r-\xi b\cos (\gamma -\vartheta )\sin (\omega _r x_C)+\frac{p_r}{\omega _r}\sin (\gamma ) \\&-\,\frac{3}{4\omega }\kappa b^3\sin (\gamma -\vartheta )\sin (\omega _r x_C) \end{aligned}$$
$$\begin{aligned} \mathcal {F}_2= & {} -\frac{\zeta }{2}a_s-\frac{1}{4\omega }\kappa b^3\sin (\omega _r x_C)\sin (3\gamma -3\vartheta -\chi ) \\ \mathcal {F}_3= & {} -\frac{1}{2}\xi (\omega _r\sigma ) b-\frac{1}{2}m x_C\xi \omega _r^2b\sin (\omega _r x_C)\cos (\omega _r x_C) \\&+\,\frac{1}{2}m\xi \omega _r b\sin (\omega _r x_C)^2 \\&+\,m\omega _r(\omega _r+\sigma )a\sin (\omega _r x_C)\sin (\gamma -\vartheta )\\&-\,\frac{1}{2}mp_r\left[ 1 +(1-x_C+x_C\cos (\omega _r))\cos (\omega _r x_C)\right. \\&\left. +\,\frac{1}{2\omega _r}(1-\cos (\omega _r))\sin (\omega _r x_C)\right] \sin (\vartheta ) \\&+\,\frac{m\omega _r^4\omega _s^2}{32\omega _r^3-32\omega _r\omega _s^2}(\omega _s-\omega _r)a_r^2a_s\\&\times \,\sin (\omega _r x_C)\sin (\gamma -\vartheta -\chi ) \end{aligned}$$
$$\begin{aligned} \mathcal {F}_4= & {} a_r\sigma -\frac{3}{32}\eta \omega _r^3a_r^3-\frac{\eta }{16}\omega _r\omega _s^2a_ra_s^2+\frac{ p_r}{\omega _r}\cos (\gamma )\nonumber \\&-\,\frac{3}{4\omega _r}\kappa b^3\sin (\omega _r x_C)\cos (\gamma -\vartheta )\nonumber \\&+\,\xi b\sin \omega _r x_C)\sin (\gamma -\vartheta )\nonumber \\ \mathcal {F}_5= & {} -3\sigma a_s+\frac{\eta }{16}\omega _r\omega _s^2\_r^2 a_s+\frac{3}{32\omega _r}\eta \omega _s^4a_s^3\nonumber \\&+\frac{\kappa }{4\omega _r}b^3\sin (\omega _r x_C)\cos (3\gamma -3\vartheta -\chi )\nonumber \\ \mathcal {F}_6= & {} -m\omega _r\left( \frac{\omega _r}{2}+\sigma \right) b+\frac{3}{8}\kappa b^3\nonumber \\&-\frac{1}{2}m p_r x_C\left[ 1-(1-x_C+x_C\cos (\omega _r))\right. \nonumber \\&\left. \times \cos (\omega _r x_C)-(1-\cos (\omega _r)\frac{\sin (\omega _r x_C)}{2\omega _r}\right] \cos (\vartheta )\nonumber \\&+\,\frac{3}{8}m\kappa \omega _r x_C b^3\cos (\omega _r x_C)\sin (\omega _r x_C)\nonumber \\&+\,m\left( \sigma +\frac{\omega _r}{2}\right) \omega _ra_r\sin (\omega _r x_C)\cos (\gamma -\vartheta )\nonumber \\&+\frac{m\omega _r^4\omega _s^2}{32\omega _r^3-32\omega _r\omega _s^2}(\omega _s-\omega _r)a_r^2a_s\sin (\omega _r x_C)\nonumber \\&\times \cos (\gamma -\vartheta -\chi )-\frac{3}{8}\kappa m b^3\sin (\omega _r x_C)^2 \end{aligned}$$
(34)

The mass matrix of Eq. (31) is \(\mathcal {M}(\mathbf {u})=\)

$$\begin{aligned} \begin{bmatrix} 1&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 1&\quad 0&\quad 0&\quad 0&\quad 0\\ -m\omega _r\sin (\omega _rx_C)\cos (\gamma -\vartheta )&\quad 0&\quad m\omega _r&\quad m\omega _r a_r\sin (\omega _r x_C)\sin (\gamma -\vartheta )&\quad 0&\quad -\frac{1}{2}\xi b\\ 0&\quad 0&\quad 0&\quad a_r&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad -3a_s&\quad a_s&\quad 0\\ -m\omega _r\sin (\omega _rx_C)\sin (\gamma -\vartheta )&\quad 0&\quad \frac{1}{2}\xi&\quad -m\omega _r a_r\sin (\omega _r x_C)\cos (\gamma -\vartheta )&\quad 0&\quad m\omega _rb \end{bmatrix} \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luongo, A., Zulli, D. Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn 81, 425–435 (2015). https://doi.org/10.1007/s11071-015-2002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2002-8

Keywords

Navigation