Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Water Resources Management Through Flood Spreading Project Suitability Mapping Using Frequency Ratio, k-nearest Neighbours, and Random Forest Algorithms

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Lack of water resources is a common issue in many countries, especially in the Middle East. Flood spreading project (FSP) is an artificial recharge technique, which is generally suggested for arid and semi-arid areas with two major aims including (1) flood mitigation and (2) artificial recharge of groundwater. This study implemented three state-of-the-art popular models including frequency ratio (FR), k-nearest neighbours (KNN), and random forest (RF) for determining the suitability of land for FSP. At the first step, suitable areas for FSP were identified according to the national guidelines and the literature. The identified areas were then verified by multiple field surveys. To produce FSP land suitability maps, several FSP conditioning factors such as topographical (i.e. slope, plan curvature, and profile curvature), hydrogeological (i.e. transmissivity, aquifer thickness, and electrical conductivity), hydrological (i.e. rainfall, distance from rivers, river density, and permeability), lithology, and land use were considered as input to the models. For the FR modelling, classified layers of the aforementioned variables were used, while their continuous layers were implemented in the KNN and RF algorithms. At the last step, receiver operating characteristic (ROC) curve was used to assess the ability and accuracy of the applied algorithms. Based on the findings, the area under the curve of ROC for the RF, KNN, and FR models was 97.1, 94.6, and 89.2%, respectively. Furthermore, transmissivity, slope, aquifer thickness, distance from rivers, rainfall, and electrical conductivity were recognized as the most influencing factors in the modelling procedure. The findings of this study indicated that the application of RF, KNN, and FR can be suggested for identification of suitable areas for FSP establishment in other regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Source: Adapted from Hashemi et al. (2015a)

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Agarwal, R., & Garg, P. K. (2016). Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resources Management,30(1), 243–260.

    Google Scholar 

  • Alesheikh, A. A., Soltani, M. J., Nouri, N., & Khalilzadeh, M. (2008). Land assessment for flood spreading site selection using geospatial information system. International Journal of Environmental Science and Technology,5(4), 455–462.

    Google Scholar 

  • Betrie, G. D., Tesfamariam, S., Morin, K. A., & Sadiq, R. (2013). Predicting copper concentrations in acid mine drainage: A comparative analysis of five machine learning techniques. Environmental Monitoring and Assessment,185(5), 4171–4182.

    Google Scholar 

  • Bonham-Carter, G. (1994). Geographic information systems for geoscientists modelling with GIS. Oxford: Pergamon.

    Google Scholar 

  • Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Natural Hazards and Earth System Science,13(11), 2815–2831.

    Google Scholar 

  • Chen, W., Hong, H., Li, S., Shahabi, H., Wang, Y., Wang, X., et al. (2019a). Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology,575, 864–873.

    Google Scholar 

  • Chen, W., Pourghasemi, H. R., & Naghibi, S. A. (2017). Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms. Bulletin of Engineering Geology and the Environment,77, 611–629.

    Google Scholar 

  • Chen, W., Pradhan, B., Li, S., Shahabi, H., Rizeei, H. M., Hou, E., et al. (2019b). Novel hybrid integration approach of bagging-based fisher’s linear discriminant function for groundwater potential analysis. Natural Resources Research. https://doi.org/10.1007/s11053-019-09465-w.

    Article  Google Scholar 

  • Chen, W., Sun, Z., & Han, J. (2019c). Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models. Applied Sciences,9(1), 171.

    Google Scholar 

  • Chen, W., Tsangaratos, P., Ilia, I., Duan, Z., & Chen, X. (2019d). Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods. Science of the Total Environment,684, 31–49.

    Google Scholar 

  • Chen, W., Xie, X., Peng, J., Shahabi, H., Hong, H., Bui, D. T., et al. (2018a). GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. CATENA,164, 135–149.

    Google Scholar 

  • Chen, W., Zhang, S., Li, R., & Shahabi, H. (2018b). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of the Total Environment,644, 1006–1018.

    Google Scholar 

  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Geology Survey of Iran (GSI). (1997). http://www.gsi.ir/Main/Lang_en/index.html. Accessed 2017.

  • Ghahari, G., Hashemi, H., & Berndtsson, R. (2014). Spate irrigation of barley through floodwater harvesting in the Gareh-Bygone plain, Iran. Irrigation and Drainage,63(5), 599–611.

    Google Scholar 

  • Ghayoumian, J., Ghermezcheshme, B., Feiznia, S., & Noroozi, A. A. (2005). Integrating GIS and DSS for identification of suitable areas for artificial recharge, case study Meimeh Basin, Isfahan, Iran. Environmental Geology,47(4), 493–500.

    Google Scholar 

  • Ghayoumian, J., Mohseni Saravi, M., Feiznia, S., Nouri, B., & Malekian, A. (2007). Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. Journal of Asian Earth Sciences,30(2), 364–374.

    Google Scholar 

  • Golkarian, A., Naghibi, S. A., Kalantar, B., & Pradhan, B. (2018). Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS. Environmental Monitoring and Assessment,190, 149. https://doi.org/10.1007/s10661-018-6507-8.

    Article  Google Scholar 

  • Hashemi, H., Berndtsson, R., Kompani-Zare, M., & Persson, M. (2013). Natural vs. artificial groundwater recharge, quantification through inverse modeling. Hydrology and Earth System Sciences,17(2), 637–650.

    Google Scholar 

  • Hashemi, H., Berndtsson, R., & Persson, M. (2015a). Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran. Hydrological Sciences Journal,60, 336–350. https://doi.org/10.1080/02626667.2014.881485.

    Article  Google Scholar 

  • Hashemi, H., Kowsar, S. A., Berndtsson, R., Wang, X., & Yasuda, H. (2017). Using floodwater for artificial recharge and spate irrigation. Sustainable Water Resources Management,2000, 697–736.

    Google Scholar 

  • Hashemi, H., Uvo, C. B., & Berndtsson, R. (2015b). Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas. Hydrology and Earth System Sciences,19(10), 4165–4181.

    Google Scholar 

  • Hong, H., Naghibi, S. A., Moradi Dashtpagerdi, M., Pourghasemi, H. R., & Chen, W. (2017). A comparative assessment between linear and quadratic discriminant analyses (LDA–QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arabian Journal of Geosciences,10(7), 167. https://doi.org/10.1007/s12517-017-2905-4.

    Article  Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. New York: Wiley.

    Google Scholar 

  • Ilia, I., & Tsangaratos, P. (2015). Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides. https://doi.org/10.1007/s10346-015-0576-3.

    Article  Google Scholar 

  • Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., & Mansor, S. (2018). Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk,5705, 1–21. https://doi.org/10.1080/19475705.2017.1407368.

    Article  Google Scholar 

  • Kordestani, M. D., Naghibi, S. A., Hashemi, H., Ahmadi, K., Kalantar, B., & Pradhan, B. (2018). Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeology Journal. https://doi.org/10.1007/s10040-018-1848-5.

    Article  Google Scholar 

  • Kowsar, S. A. (1995). An introduction to flood mitigation and optimization of floodwater. Ministry of Agriculture, Research Institute of Forests and rangelands. Technical Publication.

  • Kowsar, S. A., & Zargar, A. A. (1991). Simple weir for economical floodwater diversion. In 5th international conference on rain water cistern systems, Chinese Culture University, Taipei, Taiwan (pp. 521–528).

  • KRRWC. (2015). Khorasan Razavi Regional Water Company. http://www.khrw.ir. Accessed 2017.

  • Lee, J., Lee, K., Joung, I., Joo, K., Brooks, B. R., & Lee, J. (2015). Sigma-RF: Prediction of the variability of spatial restraints in template-based modeling by random forest. BMC Bioinformatics,16(1), 94. https://doi.org/10.1186/s12859-015-0526-z.

    Article  Google Scholar 

  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides,4(1), 33–41.

    Google Scholar 

  • Lee, J., Sameen, M., Pradhan, B., & Geomorphology, H. P. (2018). Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods. Geomorphology,303, 284–298.

    Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers,3(2), 189–196.

    Google Scholar 

  • Mahdavi, A., Tabatabaei, S. H., Mahdavi, R., & Nouri Emamzadei, M. R. (2013). Application of digital techniques to identify aquifer artificial recharge sites in GIS environment. International Journal of Digital Earth,6(6), 589–609.

    Google Scholar 

  • Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences,7(2), 711–724.

    Google Scholar 

  • Moradi Dashtpagerdi, M., Nohegar, A., Vagharfard, H., Honarbakhsh, A., Mahmoodinejad, V., Noroozi, A., et al. (2013). Application of spatial analysis techniques to select the most suitable areas for flood spreading. Water Resources Management,27(8), 3071–3084.

    Google Scholar 

  • Motevalli, A., Naghibi, A. S., Hashemi, H., Berndtsson, R., Pradhan, B., & Gholami, V. (2019). Inverse method using boosted regression tree and k-nearest neighbor to quantify effects of point and non-point source nitrate pollution in groundwater. Journal of Cleaner Production,228, 1248–1263.

    Google Scholar 

  • Mousavi, S. M., Golkarian, A., Amir Naghibi, S., Kalantar, B., & Pradhan, B. (2017). GIS-based groundwater spring potential mapping using data mining boosted regression tree and probabilistic frequency ratio models in Iran. AIMS Geosciences,3(1), 91–115.

    Google Scholar 

  • Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017a). Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management,31(9), 1–15. https://doi.org/10.1007/s11269-017-1660-3.

    Article  Google Scholar 

  • Naghibi, S. A., Dolatkordestani, M., Rezaei, A., Amouzegari, P., Heravi, M. T., Kalantar, B., et al. (2019). Application of rotation forest with decision trees as base classifier and a novel ensemble model in spatial modeling of groundwater potential. Environmental Monitoring and Assessment,191(4), 248.

    Google Scholar 

  • Naghibi, S. A., Moghaddam, D. D. D. D., Kalantar, B., Pradhan, B., & Kisi, O. (2017b). A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. Journal of Hydrology,548, 471–483.

    Google Scholar 

  • Naghibi, S. A., & Moradi Dashtpagerdi, M. (2016). Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based features. Hydrogeology Journal. https://doi.org/10.1007/s10040-016-1466-z.

    Article  Google Scholar 

  • Naghibi, S. A., & Pourghasemi, H. R. (2015). A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water resources management, 29(14), 5217–5236.

  • Naghibi, S. A., Pourghasemi, H. R. H. R., & Abbaspour, K. (2018). A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theoretical and Applied Climatology,131(3–4), 967–984.

    Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment,188(1), 44. https://doi.org/10.1007/s10661-015-5049-6.

    Article  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics,8(1), 1–16.

    Google Scholar 

  • Nasiri, H., Boloorani, A. D., Sabokbar, H. A. F., Jafari, H. R., Hamzeh, M., & Rafii, Y. (2013). Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran). Environmental Monitoring and Assessment,185(1), 707–718.

    Google Scholar 

  • Organization of Forests Rangeland and Watershed Management. (2009). Guidelines for range improvements through rain water conservation.

  • Ozdemir, A. (2011). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology,411(3–4), 290–308.

    Google Scholar 

  • Pakparvar, M., Hashemi, H., Rezaei, M., Cornelis, W. M., Nekooeian, G., & Kowsar, S. A. (2018). Artificial recharge efficiency assessment by soil water balance and modelling approaches in a multi-layered vadose zone in a dry region. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2018.1481962.

    Article  Google Scholar 

  • Pakparvar, M., Walraevens, K., Cheraghi, S. A. M., Ghahari, G., Cornelis, W., Gabriels, D., et al. (2017). Assessment of groundwater recharge influenced by floodwater spreading: An integrated approach with limited accessible data. Hydrological Sciences Journal,62(1), 147–164.

    Google Scholar 

  • Pourghasemi, H. R., & Kerle, N. (2016). Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. nvironmental Earth Sciences,75(3), 185. https://doi.org/10.1007/s12665-015-4950-1.

    Article  Google Scholar 

  • Prabhu, M. V., & Venkateswaran, S. (2015). Delineation of artificial recharge zones using geospatial techniques in Sarabanga sub basin Cauvery River, Tamil Nadu. Aquatic Procedia,4(2015), 1265–1274.

    Google Scholar 

  • Pradhan, B., & Jebur, M. N. (2017). Spatial prediction of landslide-prone areas through k-nearest neighbor algorithm and logistic regression model using high resolution airborne laser scanning data. In B. Pradhan (Ed.), Laser scanning applications in landslide assessment (pp. 151–165). Cham: Springer. https://doi.org/10.1007/978-3-319-55342-9_8.

    Chapter  Google Scholar 

  • Pradhan, B., & Lee, S. (2010a). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences,60(5), 1037–1054.

    Google Scholar 

  • Pradhan, B., & Lee, S. (2010b). Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling and Software,25(6), 747–759.

    Google Scholar 

  • Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems,9(2), 181–199.

    Google Scholar 

  • Rahimi, S., Shadman Roodposhti, M., & Ali Abbaspour, R. (2014). Using combined AHP-genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran. Environmental Earth Sciences,72(6), 1979–1992.

    Google Scholar 

  • Rahmati, O., Falah, F., Naghibi, S. A., Biggs, T., Soltani, M., Deo, R. C., et al. (2019). Land subsidence modelling using tree-based machine learning algorithms. Science of the Total Environment,672, 239–252.

    Google Scholar 

  • Rahmati, O., & Melesse, A. M. (2016). Application of Dempster–Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran. Science of the Total Environment,568, 1110–1123.

    Google Scholar 

  • Rahmati, O., Naghibi, S. A., Shahabi, H., Bui, D. T., Pradhan, B., Azareh, A., et al. (2018). Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches. Journal of Hydrology,565, 248–261.

    Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. CATENA,137(October), 360–372.

    Google Scholar 

  • Sargaonkar, A. P., Rathi, B., & Baile, A. (2011). Identifying potential sites for artificial groundwater recharge in sub-watershed of River Kanhan. India. Environmental Earth Sciences,62(5), 1099–1108.

    Google Scholar 

  • Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B., & Weerasekera, W. L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers,7(1), 115–124.

    Google Scholar 

  • Shary, P. A., Sharaya, L. S., & Mitusov, A. V. (2002). Fundamental quantitative methods of land surface analysis. Geoderma,107(1–2), 1–32. https://doi.org/10.1016/S0016-7061(01)00136-7.

    Article  Google Scholar 

  • Sidle, R. C., & Ochiai, H. (2006). Landslides: Processes, prediction, and land use. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Singh, S. K., Taylor, R. W., Rahman, M. M., & Pradhan, B. (2018). Developing robust arsenic awareness prediction models using machine learning algorithms. Journal of Environmental Management,211, 125–137.

    Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology,504, 69–79.

    Google Scholar 

  • Venkatesh, Y. V., & Kumar Raja, S. (2003). On the classification of multispectral satellite images using the multilayer perceptron. Pattern Recognition,36(9), 2161–2175.

    Google Scholar 

  • Wiesmeier, M., Barthold, F., Blank, B., & Kögel-Knabner, I. (2011). Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant and Soil,340(1–2), 7–24.

    Google Scholar 

  • Wilson, J. P., & Gallant, J. C. (2000). Terrain analysis: Principles and applications. Hoboken: Wiley.

    Google Scholar 

  • Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Computers & Geosciences,35(6), 1125–1138.

    Google Scholar 

  • Zabihi, M., Mirchooli, F., Motevalli, A., Darvishan, A. K., Reza, H., Ali, M., et al. (2018). Spatial modelling of gully erosion in Mazandaran Province, northern Iran. CATENA,161, 1–13. https://doi.org/10.1016/j.catena.2017.10.010.

    Article  Google Scholar 

  • Zaidi, F. K., Nazzal, Y., Ahmed, I., Naeem, M., & Jafri, M. K. (2015). Identification of potential artificial groundwater recharge zones in Northwestern Saudi Arabia using GIS and Boolean logic. Journal of African Earth Sciences,111, 156–169.

    Google Scholar 

  • Zarkesh, M. K. (2005). Decision support system for floodwater spreading site selection in Iran. Wageningen: Wageningen University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Vafakhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghibi, S.A., Vafakhah, M., Hashemi, H. et al. Water Resources Management Through Flood Spreading Project Suitability Mapping Using Frequency Ratio, k-nearest Neighbours, and Random Forest Algorithms. Nat Resour Res 29, 1915–1933 (2020). https://doi.org/10.1007/s11053-019-09530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09530-4

Keywords

Navigation