Abstract
The recognition of thermal face is a very promising strategy in biometrics. It is invariant to illumination, robust to pose and immune to forgery. However, thermal face image consist of face heat energy and face counter information mainly, and it makes lower discrimination for inter-class. In this paper, an enhanced thermal face recognition approach based on Multiscale Complex Fusion for Gabor coefficients (MCFG) is proposed. Initially, the Complex Gabor Jet Descriptor (CGJD) is acquired based on the block mean and standard deviation generated from the magnitude, phase, real and imaginary parts of Gabor coefficients. Then, the Complex LDA (CLDA) algorithm and feature level fusion are implemented on multiscale Gabor coefficients to reduce the dimension and enhance the discrimination. Experiments conducted on two thermal face databases NVIE and IRIS, which have some challenging thermal face images, show that the proposed thermal face recognition approach significantly outperforms the state-of-the-art approaches.
Similar content being viewed by others
References
Bengio S, Mariéthoz J (2004) The expected performance curve: a new assessment measure for person authentication. In: Proc. of Odyssey 2004: the speaker and language recognition workshop. Toledo, Spain, pp 279–284
Bengio S, Mariéthoz J (2004) A statistical significance test for person autehtication. In: Proc. of Odyssey 2004: the speaker and language recognition workshop. Toledo, Spain, pp 237–244
Chen LF, Liao HYM, Ko MT, Lin JC, Yu GJ (2000) New LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn 33(10):1713–1726
Daugman J (2000) Biometric decision landscapes. Cambridge University Comput Lab Tech Rep pp 1–13
Desa S, Hati S (2008) IR and visible face recognition using fusion of kernel based features. In: Proc. int. conf. pattern recognit., (ICPR 2008), vol 954. Tampa, FL, USA, pp 1–4
Duda RO, Hart PE (1972) Use of the hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139
Galbally J, Fierrez J, Ortega-Garcia J, McCool C, Marcel S (2009) Hill-climbing attack to an eigenface-based face verification system. In: 1st IEEE int. conf. biom., identity secur. (BIdS). Tampa, FL, USA, pp 1–6
Heo J, Kong SG, Abidi BR, Abidi MA (2004) Fusion of visual and thermal signatures with eyeglass removal for robust face recognition. In: Proc. IEEE comput. soc. conf. comput. vision pattern. recognit., (CVPR). Washington, DC, USA, pp 122–127
Hermosilla G, Loncomilla P, del Solar JR (2010) Thermal face recognition using local interest points and descriptors for HRI applications. In: Lect notes artif intell, vol 6556, pp 25–35
Hermosilla G, del Solar J, Verschae R, Correa M (2012) A comparative study of thermal face recognition methods in unconstrained environments. Pattern Recogn 45(7):2445–2459
Hermosilla G, del Solar JR, Verschae R, Correa M (2009) Face recognition using thermal infrared images for human-robot interaction applications: a comparative study. In: Lat. am. rob. symp., (LARS), vol 2, pp 1–7
IRIS. Http://www.cse.ohio-state.edu/OTCBVS-BENCH/bench.html. Accessed 20 Oct 2012
ISO (2006) Information technology-biometric performance testing and reporting, part 1: principles and framework. In: ISO/IEC 19795-1
Jain AK, Flynn P, Ross AA (2008) Handbook of biometrics, chap. 1st, introduction to biometrics. Springer, NJ, USA, pp 1–22
Jain AK, Klare B, Park U (2011) Face recognition: some challenges in forensics. In: IEEE int. conf. autom. face gesture recogn. workshops, (FG). Santa Barbara, CA, USA, pp 726–733
Kim Y, Yoo JH, Choi K (2011) A motion and similarity-based fake detection method for biometric face recognition systems. IEEE Trans Consum Electron 57(2):756–762
Kwon OK, Kong SG (2005) Multiscale fusion of visual and thermal images for robust face recognition. In: Proc. of IEEE int. conf. comput. intell. homeland secur. personal safety, (CIHSPS). Orlando, FL, USA, pp 112–116
Lades M, Vorbruggen JC, Buhmann J, Lange J, von der Malsburg C, Wurtz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42(3):300–311
Méndez H, Martín CS, Kittler J, Plasencia Y, Calana, García-Reyes E (2009) Face recognition with LWIR imagery using local binary patterns. Lect Notes Comput Sci 5558:327–336
Nandakumar K, Jain AK, Nagar A (2008) Biometric template security. Eurasip J Adv Sign Process 8(2):1–17
Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern SMC 9(1):62–66
Sellahewa H, Jassim SA (2010) Image-quality-based adaptive face recognition. IEEE Trans Instrum Meas 59(4):805–813
Shen W, Surette M, Khanna R (1997) Evaluation of automated biometrics-based identification and verification systems. Proc IEEE 85(9):1464–1478
Sirovich L, Kirby M (1987) Low-dimensional procedure for the characterization of human face. J Opt Soc Am A 4(3):519–524
Socolinsky D, Selinger A (2004) Thermal face recognition in an operational scenario. In: Proc. IEEE comput. soc. conf. comput. vision pattern recognit. (CVPR 2004), vol 2. Washington, DC, USA, pp 1012–1019
Socolinsky DA, Selinger A (2004) Thermal face recognition over time. In: Proc. of 17th Int. conf. pattern recognit. (ICPR), vol 4, pp 187–190
Wang N, Li Q, El-Latif AAA., Zhang T, Niu X (2012) Toward accurate localization and high recognition performance for noisy iris images. Multimed Tools Appl 1–20. doi:10.1007/s11042-012-1278-7
Wang S, Liu Z, Lv S, Lv Y, Wu G, Peng P, Chen F, Wang X (2010) A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Trans Multimed 12(7):682–691
Yang J, Liu L, Jiang T, Fan Y (2003) A modified gabor filter design method for fingerprint image enhancement. Pattern Recogn Lett 24(12):1805–1817
Yang J, Yang J, Frangi AF (2003) Combined fisherfaces framework. Image Vis Comput 21(12):1037–1044
Zhu Z, Lu H, Zhao Y (2007) Scale multiplication in odd gabor transform domain for edge detection. J Vis Commun Image Represent 18(1):68–80
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Number: 61100187) and the Fundamental Research Funds for the Central Universities (Grant Number: HIT. NSRIF. 2010046, HIT. NSRIF. 2013061).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, N., Li, Q., Abd El-Latif, A.A. et al. An enhanced thermal face recognition method based on multiscale complex fusion for Gabor coefficients. Multimed Tools Appl 72, 2339–2358 (2014). https://doi.org/10.1007/s11042-013-1551-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-013-1551-4