Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An enhanced thermal face recognition method based on multiscale complex fusion for Gabor coefficients

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The recognition of thermal face is a very promising strategy in biometrics. It is invariant to illumination, robust to pose and immune to forgery. However, thermal face image consist of face heat energy and face counter information mainly, and it makes lower discrimination for inter-class. In this paper, an enhanced thermal face recognition approach based on Multiscale Complex Fusion for Gabor coefficients (MCFG) is proposed. Initially, the Complex Gabor Jet Descriptor (CGJD) is acquired based on the block mean and standard deviation generated from the magnitude, phase, real and imaginary parts of Gabor coefficients. Then, the Complex LDA (CLDA) algorithm and feature level fusion are implemented on multiscale Gabor coefficients to reduce the dimension and enhance the discrimination. Experiments conducted on two thermal face databases NVIE and IRIS, which have some challenging thermal face images, show that the proposed thermal face recognition approach significantly outperforms the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bengio S, Mariéthoz J (2004) The expected performance curve: a new assessment measure for person authentication. In: Proc. of Odyssey 2004: the speaker and language recognition workshop. Toledo, Spain, pp 279–284

  2. Bengio S, Mariéthoz J (2004) A statistical significance test for person autehtication. In: Proc. of Odyssey 2004: the speaker and language recognition workshop. Toledo, Spain, pp 237–244

  3. Chen LF, Liao HYM, Ko MT, Lin JC, Yu GJ (2000) New LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn 33(10):1713–1726

    Article  Google Scholar 

  4. Daugman J (2000) Biometric decision landscapes. Cambridge University Comput Lab Tech Rep pp 1–13

  5. Desa S, Hati S (2008) IR and visible face recognition using fusion of kernel based features. In: Proc. int. conf. pattern recognit., (ICPR 2008), vol 954. Tampa, FL, USA, pp 1–4

  6. Duda RO, Hart PE (1972) Use of the hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15

    Article  Google Scholar 

  7. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MATH  MathSciNet  Google Scholar 

  8. Galbally J, Fierrez J, Ortega-Garcia J, McCool C, Marcel S (2009) Hill-climbing attack to an eigenface-based face verification system. In: 1st IEEE int. conf. biom., identity secur. (BIdS). Tampa, FL, USA, pp 1–6

  9. Heo J, Kong SG, Abidi BR, Abidi MA (2004) Fusion of visual and thermal signatures with eyeglass removal for robust face recognition. In: Proc. IEEE comput. soc. conf. comput. vision pattern. recognit., (CVPR). Washington, DC, USA, pp 122–127

  10. Hermosilla G, Loncomilla P, del Solar JR (2010) Thermal face recognition using local interest points and descriptors for HRI applications. In: Lect notes artif intell, vol 6556, pp 25–35

  11. Hermosilla G, del Solar J, Verschae R, Correa M (2012) A comparative study of thermal face recognition methods in unconstrained environments. Pattern Recogn 45(7):2445–2459

    Article  Google Scholar 

  12. Hermosilla G, del Solar JR, Verschae R, Correa M (2009) Face recognition using thermal infrared images for human-robot interaction applications: a comparative study. In: Lat. am. rob. symp., (LARS), vol 2, pp 1–7

  13. IRIS. Http://www.cse.ohio-state.edu/OTCBVS-BENCH/bench.html. Accessed 20 Oct 2012

  14. ISO (2006) Information technology-biometric performance testing and reporting, part 1: principles and framework. In: ISO/IEC 19795-1

  15. Jain AK, Flynn P, Ross AA (2008) Handbook of biometrics, chap. 1st, introduction to biometrics. Springer, NJ, USA, pp 1–22

    Google Scholar 

  16. Jain AK, Klare B, Park U (2011) Face recognition: some challenges in forensics. In: IEEE int. conf. autom. face gesture recogn. workshops, (FG). Santa Barbara, CA, USA, pp 726–733

  17. Kim Y, Yoo JH, Choi K (2011) A motion and similarity-based fake detection method for biometric face recognition systems. IEEE Trans Consum Electron 57(2):756–762

    Article  Google Scholar 

  18. Kwon OK, Kong SG (2005) Multiscale fusion of visual and thermal images for robust face recognition. In: Proc. of IEEE int. conf. comput. intell. homeland secur. personal safety, (CIHSPS). Orlando, FL, USA, pp 112–116

  19. Lades M, Vorbruggen JC, Buhmann J, Lange J, von der Malsburg C, Wurtz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42(3):300–311

    Article  Google Scholar 

  20. Méndez H, Martín CS, Kittler J, Plasencia Y, Calana, García-Reyes E (2009) Face recognition with LWIR imagery using local binary patterns. Lect Notes Comput Sci 5558:327–336

    Article  Google Scholar 

  21. Nandakumar K, Jain AK, Nagar A (2008) Biometric template security. Eurasip J Adv Sign Process 8(2):1–17

    Google Scholar 

  22. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  23. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern SMC 9(1):62–66

    MathSciNet  Google Scholar 

  24. Sellahewa H, Jassim SA (2010) Image-quality-based adaptive face recognition. IEEE Trans Instrum Meas 59(4):805–813

    Article  Google Scholar 

  25. Shen W, Surette M, Khanna R (1997) Evaluation of automated biometrics-based identification and verification systems. Proc IEEE 85(9):1464–1478

    Article  Google Scholar 

  26. Sirovich L, Kirby M (1987) Low-dimensional procedure for the characterization of human face. J Opt Soc Am A 4(3):519–524

    Article  Google Scholar 

  27. Socolinsky D, Selinger A (2004) Thermal face recognition in an operational scenario. In: Proc. IEEE comput. soc. conf. comput. vision pattern recognit. (CVPR 2004), vol 2. Washington, DC, USA, pp 1012–1019

  28. Socolinsky DA, Selinger A (2004) Thermal face recognition over time. In: Proc. of 17th Int. conf. pattern recognit. (ICPR), vol 4, pp 187–190

  29. Wang N, Li Q, El-Latif AAA., Zhang T, Niu X (2012) Toward accurate localization and high recognition performance for noisy iris images. Multimed Tools Appl 1–20. doi:10.1007/s11042-012-1278-7

    Google Scholar 

  30. Wang S, Liu Z, Lv S, Lv Y, Wu G, Peng P, Chen F, Wang X (2010) A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Trans Multimed 12(7):682–691

    Article  Google Scholar 

  31. Yang J, Liu L, Jiang T, Fan Y (2003) A modified gabor filter design method for fingerprint image enhancement. Pattern Recogn Lett 24(12):1805–1817

    Article  Google Scholar 

  32. Yang J, Yang J, Frangi AF (2003) Combined fisherfaces framework. Image Vis Comput 21(12):1037–1044

    Article  Google Scholar 

  33. Zhu Z, Lu H, Zhao Y (2007) Scale multiplication in odd gabor transform domain for edge detection. J Vis Commun Image Represent 18(1):68–80

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Number: 61100187) and the Fundamental Research Funds for the Central Universities (Grant Number: HIT. NSRIF. 2010046, HIT. NSRIF. 2013061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Li, Q., Abd El-Latif, A.A. et al. An enhanced thermal face recognition method based on multiscale complex fusion for Gabor coefficients. Multimed Tools Appl 72, 2339–2358 (2014). https://doi.org/10.1007/s11042-013-1551-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1551-4

Keywords

Navigation