Abstract
Traditional wearable devices have various shortcomings, such as uncomfortableness for long-term wearing, and insufficient accuracy, etc. Thus, health monitoring through traditional wearable devices is hard to be sustainable. In order to obtain healthcare big data by sustainable health monitoring, we design “Smart Clothing”, facilitating unobtrusive collection of various physiological indicators of human body. To provide pervasive intelligence for smart clothing system, mobile healthcare cloud platform is constructed by the use of mobile internet, cloud computing and big data analytics. This paper introduces design details, key technologies and practical implementation methods of smart clothing system. Typical applications powered by smart clothing and big data clouds are presented, such as medical emergency response, emotion care, disease diagnosis, and real-time tactile interaction. Especially, electrocardiograph signals collected by smart clothing are used for mood monitoring and emotion detection. Finally, we highlight some of the design challenges and open issues that still need to be addressed to make smart clothing ubiquitous for a wide range of applications.
Similar content being viewed by others
References
Ahn JH, Je JH (2012) Stretchable electronics: materials, architectures and integrations. J Phys D Appl Phys 45(10):103, 001
Bauer UE, Briss PA, Goodman RA, Bowman BA (2014) Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the usa. Lancet 384 (9937):45–52
Burdea G, Coiffet P (2003) Virtual reality technology. Presence Teleop Virt 12(6):663–664
Caine N (2006) Elderly population health status survey. Qual Life Res 6(7-8):54–54
CDC (2015) The leading causes of death and disability in the united states. http://www.cdc.gov/chronicdisease/overview
Chao HC, Zeadally S, Hu B (2016) Wearable computing for health care. J Med Syst 40(4):1–3
Chen M (2014) NDNC-BAN: supporting rich media healthcare services via named data networking in cloud-assisted wireless body area networks. Inf Sci 284:142–156
Chen M, Gonzalez S, Leung V, Zhang Q, Li M (2010) A 2g-rfid-based e-healthcare system. IEEE Wirel Commun 17(1):37–43
Chen M, Gonzalez S, Vasilakos A, Cao H, Leung VC (2011) Body area networks: A survey. Mobile Netw Appl 16(2):171–193
Chen M, Jin H, Wen Y, Leung V (2013a) Enabling technologies for future data center networking: a primer. IEEE Netw 27(4):8–15
Chen M, Ma Y, Ullah S, Cai W, Song E (2013b) Rochas: robotics and cloud-assisted healthcare system for empty nester. In: Proceedings of the 8th international conference on body area networks, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp 217–220
Chen M, Mao S, Liu Y (2014a) Big data: A survey. Mobile Netw Appl 19(2):171–209
Chen M, Mao S, Zhang Y, Leung VC (2014b) Big data: related technologies, challenges and future prospects. Springer
Chen M, Wan J, González S, Liao X, Leung V (2014c) A survey of recent developments in home m2m networks. IEEE Commun Surv Tutorials 16(1):98–114
Chen M, Hao Y, Li Y, Lai CF, Wu D (2015a) On the computation offloading at ad hoc cloudlet: architecture and service modes. IEEE Commun Mag 53(6):18–24
Chen M, Hao Y, Li Y, Wu D, Huang D (2015b) Demo: Lives: Learning through interactive video and emotion-aware system. In: Proceedings of the 16th ACM international symposium on mobile ad hoc networking and computing, ACM, pp 399– 400
Chen M, Zhang Y, Hu L, Taleb T, Sheng Z (2015c) Cloud-based wireless network: Virtualized, reconfigurable, smart wireless network to enable 5g technologies. Mobile Netw Appl 20(6):704–712
Chen M, Zhang Y, Li Y, Hassan M, Alamri A (2015d) Aiwac: affective interaction through wearable computing and cloud technology. IEEE Wirel Commun 22(1):20–27
Chen M, Zhang Y, Li Y, Mao S, Leung V (2015e) Emc: emotion-aware mobile cloud computing in 5g. IEEE Netw 29(2):32–38
Chen M, Ma Y, Hao Y, Wu D, Zhang Y, Song E (2016) CP-Robot: Cloud-assisted Pillow Robot for Emotion Sensing and Interaction. In: EAI international conference on industrial IoT technologies and applications, EAI, p 13
COMPUTEX (2016) COMPUTEX TAIPEI 2016. http://my.computex.biz/
Costa R, Carneiro D, Novais P, Lima L, Machado J, Marques A, Neves J (2009) Ambient assisted living. In: 3rd symposium of ubiquitous computing and ambient intelligence 2008, Springer, pp 86–94
Costanzo A, Faro A, Giordano D, Pino C (2016) Mobile cyber physical systems for health care: Functions, ambient ontology and e-diagnostics. In: 2016 13th IEEE annual consumer communications & networking conference (CCNC), IEEE, pp 972– 975
Ge XH, Yang B, Ye J, Mao G, Wang CX, Han T (2015) Spatial Spectrum and Energy Efficiency of Random Cellular Networks. IEEE Trans Commun 63(3):1019–1030
Ha S, Lonkar K, Mittal A, Chang FK (2010) Adhesive layer effects on pzt-induced lamb waves at elevated temperatures. Struct Health Monit 9(3):247–256
Hassanalieragh M, Page A, Soyata T, Sharma G, Aktas M, Mateos G, Kantarci B, Andreescu S (2015) Health monitoring and management using internet-of-things (iot) sensing with cloud-based processing: Opportunities and challenges. In: 2015 IEEE international conference on services computing (SCC), IEEE, pp 285–292
Hemmerling TM, Le N (2007) Brief review: Neuromuscular monitoring: an update for the clinician. Can J Anesth 54(1):58–72
Hossain MS (2015) Cloud-supported cyber-physical localization framework for patients monitoring. IEEE Syst J PP(99):1–10
Hossain MS, Muhammad G (2016) Cloud-assisted Industrial Internet of Things (IIoT) c Enabled framework for health monitoring. Comput Netw 101:192–202
Hossain MS, Muhammad G, Alhamid MF, Song B, Al-Mutib K (2016) Audio-visual emotion recognition using big data towards 5g. Mobile Netw Appl:1–11
Hu L, Qiu M, Song J, Hossain MS, Ghoneim A (2015) Software defined healthcare networks. IEEE Wirel Commun 22(6):67–75
Jaimes LG, Calderon J, Lopez J, Raij A (2015) Trends in mobile cyber-physical systems for health just-in time interventions. In: SoutheastCon 2015, IEEE, pp 1–6
Jassas MS, Qasem AA, Mahmoud QH (2015) A smart system connecting e-health sensors and the cloud. In: 2015 IEEE 28th canadian conference on electrical and computer engineering (CCECE), IEEE, pp 712–716
Ji W, Frossard P, Chen BW, Chen Y (2015) Profit optimization for wireless video broadcasting systems based on polymatroidal analysis. IEEE Trans Multimedia 17(12):2310–2327
Jing Q, Vasilakos AV, Wan J, Lu J, Qiu D (2014) Security of the internet of things: Perspectives and challenges. Wirel Netw 20(8):2481–2501
Juarez JM, Ochotorena JM, Campos M, Combi C (2015) Spatiotemporal data visualisation for homecare monitoring of elderly people. Artif Intell Med 65(2):97–111
Kan C, Chen Y, Leonelli F, Yang H (2015) Mobile sensing and network analytics for realizing smart automated systems towards health internet of things. In: 2015 IEEE international conference on automation science and engineering (CASE), IEEE, pp 1072–1077
Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A et al (2011) Epidermal electronics. Science 333(6044):838–843
Kim RH (2015) Cure performance and effectiveness of portable smart healthcare wear system using electro-conductive textiles. Procedia Manuf 3:542–549
Lanata A, Valenza G, Nardelli M, Gentili C, Scilingo EP (2015) Complexity index from a personalized wearable monitoring system for assessing remission in mental health. IEEE J Biomedical Health Infor 19(1):132–139
Li Y, Dai W, Ming Z, Qiu M (2016) Privacy protection for preventing data over-collection in smart city. IEEE Trans Comput 65(5):1339–1350
Lin K, Wang W, Wang X, Ji W, Wan J (2015) Qoe-driven spectrum assignment for 5g wireless networks using sdr. IEEE Wirel Commun 22(6):48–55
Lin K, Chen M, Deng J, Hassan MM, Fortino G (2016) Enhanced fingerprinting and trajectory prediction for iot localization in smart buildings. IEEE Transactions on Automation Science and Engineering PP (99):1–14. doi:10.1109/TASE.2016.2543242
Liu CH, Fan J, Branch JW, Leung KK (2014a) Toward qoi and energy-efficiency in internet-of-things sensory environments. IEEE Trans Emerging Topics Computing 2(4):473–487
Liu CH, Leung KK, Gkelias A (2014b) A generic admission-control methodology for packet networks. IEEE Trans Wirel Commun 13(2):604–617
Liu CH, Yang B, Liu T (2014c) Efficient naming, addressing and profile services in internet-of-things sensory environments. Ad Hoc Netw 18:85–101
Liu CH, Zhao J, Zhang H, Guo S, Leung KK, Crowcroft J (2016) Energy-efficient event detection by participatory sensing under budget constraints. IEEE Syst J PP(99):1–12
Liu J, Wang Q, Wan J, Xiong J, Zeng B (2013) Towards key issues of disaster aid based on wireless body area networks. TIIS 7(5):1014–1035
Liu KC, Chan CT, Hsu SJ (2015) A confidence-based approach to hand movements recognition for cleaning tasks using dynamic time warping. In: 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN), IEEE, pp 1–6
Lobelo F, Kelli HM, Tejedor SC, Pratt M, McConnell MV, Martin SS (2016) The wild wild west: A framework to integrate mhealth software applications and wearables to support physical activity assessment, counseling and interventions for cardiovascular disease risk reduction. Progress in cardiovascular diseases
Ma H (2011) Internet of things: Objectives and scientific challenges. J Comput Sci Technol 26(6):919–924
Ma H, Liu L, Zhou A, Zhao D (2015a) On networking of internet of things: Explorations and challenges. IEEE Internet Things J PP(99):1–1
Ma Y, Liu CH, Alhussein M, Zhang Y, Chen M (2015b) Lte-based humanoid robotics system. Microprocess Microsyst 39(8):1279–1284
Ma Y, Zhang Y, Dung OM, Li R, Zhang D (2015c) Health internet of things: Recent applications and outlook. J Intell Technol 16(2):351–362
Majeed Q, Hbail H, Chalechale A (2015) A comprehensive mobile e-healthcare system. In: 2015 7th conference on information and knowledge technology (IKT), IEEE, pp 1–4
Moradi E, Koski K, Hasani M, Rahmat-Samii Y, Ukkonen L (2015) Antenna design considerations for far field and near field wireless body-centric systems. In: 2015 IEEE international conference on computational electromagnetics (ICCEM), IEEE, pp 59–60
Moser LE, Melliar-Smith P (2015) Personal health monitoring using a smartphone. In: 2015 IEEE international conference on mobile services (MS), IEEE, pp 344–351
Murali S, Rincon Vallejos FJ, Atienza Alonso D (2015) A wearable device for physical and emotional health monitoring. In: Computing in cardiology 2015, vol 42, pp 121–124
MWC 2016 (2016) Mobile world congress. https://www.mobileworldcongress.com/
National Bureau of Statistics of China (2013) National finance health care spending. http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A080501&sj=2013
National Bureau of Statistics of China (2014) National finance health care spending. http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A080501&sj=2014
Ohta Y, Tamura H (2014) Mixed reality: merging real and virtual worlds. Springer Publishing Company, Incorporated
Páez DG, de Buenaga Rodríguez M, Sánz EP, Villalba MT, Gil RM (2015) Big data processing using wearable devices for wellbeing and healthy activities promotion
Peng L (2016) On the future integrated datacenter networks: Designs, operations, and solutions. Opt Switch Netw 19(Part 2):58–65. doi:10.1016/j.osn.2015.06.001
Peng L, Youn CH, Tang W, Qiao C (2012) A novel approach to optical switching for intradatacenter networking. J Lightwave Technol 30(2):252–266
Peng LM, Youn CH, Qiao C (2013) Theoretical analyses of lightpath blocking performance in co-ofdm optical networks with/without spectrum conversion. IEEE Commun Lett 17(4):789–792
Poon CC, Lo BP, Yuce MR, Alomainy A, Hao Y (2015) Body sensor networks: In the era of big data and beyond. IEEE Rev Biomed Eng 8:4–16
Raghu D, Peter H (2013) Printed, organic & flexible electronics forecasts, players & opportunities 2010-2020
Rodgers MM, Pai VM, Conroy RS (2015) Recent advances in wearable sensors for health monitoring. IEEE Sensors J 15(6):3119–3126
Shao R (2012) Chronic diseases and health promotion. World Health Organization, Geneva
Sheng Z, Fan J, Liu CH, Leung V, Liu X, Leung KK (2015) Energy-efficient relay selection for cooperative relaying in wireless multimedia networks. IEEE Trans Veh Technol 64(3):1156–1170
Smart Fabrics & Wearable Technology (2015) The 11th edition of smart fabrics & wearable technology conference. https://www.wearconferences.com/
Song Z, Liu CH, Wu J, Ma J, Wang W (2014) Qoi-aware multi-task-oriented dynamic participant selection with budget constraints. IEEE Trans Veh Technol 63(9):4618–4632
Sultan N (2015) Reflective thoughts on the potential and challenges of wearable technology for healthcare provision and medical education. Int J Inf Manag 35(5):521–526
Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339(6116):166–172
Tunstall-Pedoe H (2006) Preventing chronic diseases. a vital investment: Who global report. Int J Epidemiol 35(4):1107– 1107
Varshney U (2014) Mobile health: Four emerging themes of research. Decis Support Syst 66:20–35
Wan J, Yan H, Liu Q, Zhou K, Lu R, Li D (2013a) Enabling cyber–physical systems with machine–to–machine technologies. Int J Ad Hoc Ubiquitous Comput 13(3-4):187–196
Wan J, Zou C, Ullah S, Lai CF, Zhou M, Wang X (2013b) Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Netw 27(5):56–61
Wan J, Zhang D, Sun Y, Lin K, Zou C, Cai H (2014a) Vcmia: a novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. Mobile Netw Appl 19(2):153–160
Wan J, Zhang D, Zhao S, Yang L, Lloret J (2014b) Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Commun Mag 52(8):106–113
Wang H, Peng D, Wang W, Sharif H, Chen HH, Khoynezhad A (2010) Resource-aware secure ecg healthcare monitoring through body sensor networks. IEEE Wirel Commun 17(1):12–19
Wang H, Wu S, Chen M, Wang W (2014) Security protection between users and the mobile media cloud. IEEE Commun Mag 52(3):73–79
Wang J, Qiu M, Guo B (2015) High reliable real-time bandwidth scheduling for virtual machines with hidden markov predicting in telehealth platform. Futur Gener Comput Syst 49:68– 76
Wilkinson RG, Marmot MG (2003) Social determinants of health: the solid facts. World Health Organization
World Health Organization (2014) Global status report on noncommunicable diseases 2014. http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf
World Health Organization (2015) World Report on Ageing and Health. World Health Organization
Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6(5):296–301
Yu F, Zhao Y, Gu J, Quigley KL, Chi NC, Tai YC, Hsiai TK (2012) Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Biomed Microdevices 14(2):357–366
Yurur O, Liu CH, Moreno W (2014) A survey of context-aware middleware designs for human activity recognitions. IEEE Commun Mag 52(6):24–31
Yurur O, Liu CH, Sheng Z, Leung VCM, Moreno W, Leung KK (2016) Context-awareness for mobile sensing: A survey and future directions. IEEE Communications Surveys and Tutorials Letters 18(1):68–93
Zhang B, Song Z, Liu CH, Ma J, Wang W (2015a) An event-driven qoi-aware participatory sensing framework with energy and budget constraints. ACM Trans Intell Syst Technol 6(3):42
Zhang Y, Chen M, Mao S, Hu L, Leung V (2014) Cap: Community activity prediction based on big data analysis. IEEE Netw 28(4):52–57
Zhang Y, Qiu M, Tsai CW, Hassan MM, Alamri A (2015b) Health-cps: Healthcare cyber-physical system assisted by cloud and big data. IEEE Systems Journal PP(99):1–8
Zhang Y, Chen M, Huang D, Wu D, Li Y (2016) idoctor: Personalized and professionalized medical recommendations based on hybrid matrix factorization. Futur Gener Comput Syst
Zhang Z, Wang H, Wang C, Fang H (2013) Interference mitigation for cyber-physical wireless body area network system using social networks. IEEE Transactions on Emerging Topics in Computing 1(1):121–132
Zhang Z, Wang H, Wang C, Fang H (2015c) Cluster-based epidemic control through smartphone-based body area networks. IEEE Trans Parallel Distrib Syst 26(3):681–690
Zhou L, Hu R, Qian Y, Chen HH (2013) Energy-spectrum efficiency tradeoff for video streaming over mobile ad hoc networks. IEEE J Sel Areas Commun 31(5):981–991
Zhou L, Yang Z, Wang H, Guizani M (2014) Impact of execution time on adaptive wireless video scheduling. IEEE J Sel Areas Commun 32(4):760–772
Zhu N, Diethe T, Camplani M, Tao L, Burrows A, Twomey N, Kaleshi D, Mirmehdi M, Flach P, Craddock I (2015) Bridging e-health and the internet of things: The sphere project. IEEE Intell Syst 30(4):39–46
Acknowledgements
This work is supported by the National Basic Research Program of China (973 Program) (no. 2014CB744600), and the National Natural Science Foundation of China (no. 61572220). Thank Yixue Hao, Long Hu, Xiaobo Shi, Yongfeng Qian, Jun Yang, Ping Zhou, Wei Li, Yiming Miao, Lu Wang, Hang Ruan, Tong Han, Chuanbei Wu, Binjie Shi, Mengchen Liu, Chao Han, Zeru Wei, Yi Xu and Jiayi Lu to contribute in various aspects for building EPIC Smart Clothing testbed.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, M., Ma, Y., Song, J. et al. Smart Clothing: Connecting Human with Clouds and Big Data for Sustainable Health Monitoring. Mobile Netw Appl 21, 825–845 (2016). https://doi.org/10.1007/s11036-016-0745-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11036-016-0745-1