Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Presentations of Schützenberger groups of minimal subshifts

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In previous work, the first author established a natural bijection between minimal subshifts and maximal regular J -classes of free profinite semigroups. In this paper, the Schützenberger groups of such J -classes are investigated, in particular in respect to a conjecture proposed by the first author concerning their profinite presentation. The conjecture is established for all non-periodic minimal subshifts associated with substitutions. It entails that it is decidable whether a finite group is a quotient of such a profinite group. As a further application, the Schützenberger group of the J -class corresponding to the Prouhet-Thue-Morse subshift is shown to admit a somewhat simpler presentation, from which it follows that it has rank three, and that it is non-free relatively to any pseudovariety of groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Almeida, Finite Semigroups and Universal Algebra, World Scientific, Singapore, 1995, English translation.

    Google Scholar 

  2. J. Almeida, Dynamics of implicit operations and tameness of pseudovarieties of groups, Transactions of the American Mathematical Society 354 (2002), 387–411.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Almeida, Profinite groups associated with weakly primitive substitutions, Fundamentalnaya i Prikladnaya Matematika (Fundamental and Applied Mathematics) 11 (2005), 13–48, In Russian. English version in Journal of Mathematical Sciences 144 (2007), 3881–3903.

    MATH  Google Scholar 

  4. J. Almeida, Profinite semigroups and applications, in Structural Theory of Automata, Semigroups, and Universal Algebra (New York) (V. B. Kudryavtsev and I. G. Rosenberg, eds.), NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 207, Springer, Berlin, 2005, Proceedings of the NATO Advanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra, Montréal, Québec, Canada, 7–18 July, 2003, pp. 1–45.

    Google Scholar 

  5. J. Almeida and A. Costa, Infinite-vertex free profinite semigroupoids and symbolic dynamics, Journal of Pure and Applied Algebra 213 (2009), 605–631.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Almeida and M. V. Volkov, Subword complexity of profinite words and subgroups of free profinite semigroups, International Journal of Algebra and Computation 16 (2006), 221–258.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Balková, E. Pelantová and W. Steiner, Sequences with constant number of return words, Monatshefte für Mathematik 155 (2008), 251–263.

    Article  MATH  Google Scholar 

  8. A. Costa, Conjugacy invariants of subshifts: an approach from profinite semigroup theory, International Journal of Algebra and Computation 16 (2006), 629–655.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Costa and B. Steinberg, Profinite groups associated to sofic shifts are free, Proceedings of the London Mathematical Society 102 (2011), 341–369.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Durand, A characterization of substitutive sequences using return words, Discrete Mathematics 179 (1998), 89–101.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory and Dynamical Systems 20 (2000), 1061–1078.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Durand, B. Host and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory and Dynamical Systems 19 (1999), 953–993.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematicsrlin, 2002.

  14. The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4, 2006 (http://www.gap-system.org).

  15. K. W. Gruenberg, Projective profinite groups, Journal of the London Mathematical Society 42 (1967), 155–165.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Harju and M. Linna, On the periodicity of morphisms on free monoids, RAIRO Informatique Théorique et Applications 20 (1986), 47–54.

    MathSciNet  MATH  Google Scholar 

  17. R. P. Hunter, Some remarks on subgroups defined by the Bohr compactification, Semigroup Forum 26 (1983), 125–137.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  19. M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  20. A. Lubotzky, Pro-finite presentations, Journal of Algebra 242 (2001), 672–690.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Margolis, M. Sapir and P. Weil, Irreducibility of certain pseudovarieties, Communications in Algebra 26 (1998), 779–792.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoretical Computer Science 99 (1992), 327–334.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Mossé, Reconnaissabilité des substitutions et complexité des suites automatiques, Bulletin de la Société Mathématique de France 124 (1996), 329–346.

    MATH  Google Scholar 

  24. J.-J. Pansiot, Decidability of periodicity for infinite words, RAIRO Informatique Théorique et Applications 20 (1986), 43–46.

    MathSciNet  MATH  Google Scholar 

  25. J. Rhodes and B. Steinberg, Closed subgroups of free profinite monoids are projective profinite groups, The Bulletin of the London Mathematical Society 40 (2008), 375–383.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Rhodes and B. Steinberg, The q-theory of Finite Semigroups, Springer Monographs in Mathematics, Springer, Berlin, 2009.

    Book  MATH  Google Scholar 

  27. L. Ribes and P. A. Zalesskiĭ, Profinite groups, Ergebenisse der Mathematik und ihrer Grenzgebiete, Vol. 40, Springer, Berlin, 2000.

    Book  MATH  Google Scholar 

  28. B. Steinberg, Maximal subgroups of the minimal ideal of a free profinite monoid are free, Israel Journal of Mathematics 176 (2010), 139–155.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Wilson, Profinite Groups, London Mathematical Society Monographs, New Series, Vol. 19, Clarendon, Oxford, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Almeida.

Additional information

Research funded by the European Regional Development Fund, through the programme COMPETE, by the Portuguese Government through Centro de Matemática da Universidade do Porto, Centre for Mathematics of the University of Coimbra, and FCT — Fundação para a Ciência e a Tecnologia, under the projects PEst-C/MAT/UI0144/2011 and PEst-C/MAT/UI0324/2011, and by the FCT project PTDC/MAT/65481/2006, within the framework of the programmes COMPETE and FEDER.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, J., Costa, A. Presentations of Schützenberger groups of minimal subshifts. Isr. J. Math. 196, 1–31 (2013). https://doi.org/10.1007/s11856-012-0139-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0139-4

Keywords

Navigation