Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Deep Learning and Design for Additive Manufacturing: A Framework for Microlattice Architecture

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A framework for adopting machine learning is presented for both analysis and design of microlattices, which can be fabricated using additive manufacturing techniques. Building on graph autoencoders in the deep learning realm, a learning algorithm is designed within an encoder and a decoder (autoencoder), which are responsible for analysis and design of microlattice architectures, respectively. Microlattices are generated by a compact genetic algorithm, and their corresponding mechanical properties are obtained by finite-element analysis. The training dataset consists of 2500 microlattices. The autoencoder is trained in a supervised manner with the graph representation of the generated microlattices. The encoder component learns to infer the mechanical properties of a microlattice as latent variables in the form of force–displacement characteristics, whereas the decoder component is presented with desired mechanical properties as inputs and creates a corresponding microlattice. The decoder is able to generate microlattices from the desired mechanical properties. The decoder-generated microlattices are in good agreement with the original ones within and/or without the training dataset. The ability of the encoder to capture more complex mapping, from microlattice architectures to performance metrics, can be improved by adding more graph convolutional layers to the encoder, i.e., producing deeper networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. DebRoy, T. Mukherjee, J.O. Milewski, J.W. Elmer, B. Ribic, J.J. Blecher, and W. Zhang, Nat. Mater. 18, 1026 (2019).

    Article  Google Scholar 

  2. M.G. Rashed, M. Ashraf, R.A.W. Mines, and P.J. Hazell, Mater. Des. 95, 518 (2016).

    Article  Google Scholar 

  3. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. (Upper Saddle River: Pearson, 2009).

    MATH  Google Scholar 

  4. S.O. Haykin, Neural Networks and Learning Machines, 3rd ed. (New York: Pearson, 2008).

    Google Scholar 

  5. Y. Tang, G. Dong, Q. Zhou, Y.F. Zhao, and I.E.E.E. Trans, Autom. Sci. Eng. 15, 1546 (2017).

    Google Scholar 

  6. G. Dong, Y. Tang, and Y.F. Zhao, J. Mech. Des. 139, 100906 (2017).

    Article  Google Scholar 

  7. M. Mohsenizadeh, F. Gasbarri, M. Munther, A. Beheshti, and K. Davami, Mater. Des. 139, 521 (2018).

    Article  Google Scholar 

  8. D.W. Abueidda, I. Jasiuk, and N.A. Sobh, Mater. Des. 145, 20 (2018).

    Article  Google Scholar 

  9. J. Robbins, S.J. Owen, B.W. Clark, and T.E. Voth, Addit. Manuf. 12, 296 (2016).

    Article  Google Scholar 

  10. M. Helou and S. Kara, Int. J. Comput. Integr. Manuf. 31, 243 (2018).

    Article  Google Scholar 

  11. D.S. Nguyen, F. Vignat, in 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (2016), pp. 966–970.

  12. D. Mahmoud and M.A. Elbestawi, J. Manuf. Mater. Process. 1, 13 (2017).

    Google Scholar 

  13. J. Feng, J. Fu, Z. Lin, C. Shang, and B. Li, Visual Comput. Ind. Biomed. Art 1, 5 (2018).

    Article  Google Scholar 

  14. V.S. Deshpande, M.F. Ashby, and N.A. Fleck, Acta Mater. 49, 1035 (2001).

    Article  Google Scholar 

  15. T.A. Schaedler and W.B. Carter, Annu. Rev. Mater. Res. 46, 187 (2016).

    Article  Google Scholar 

  16. J. Souza, A. Großmann, and C. Mittelstedt, Addit. Manuf. 23, 53 (2018).

    Article  Google Scholar 

  17. L. Cheng, P. Zhang, E. Biyikli, J. Bai, J. Robbins, and A. To, Rapid Prototyp. J. 23, 660 (2017).

    Article  Google Scholar 

  18. K. Liu and A. Tovar, Struct. Multidiscip. Optim. 50, 1175 (2014).

    Article  MathSciNet  Google Scholar 

  19. D. Chen, M. Skouras, B. Zhu, and W. Matusik, Sci. Adv. 4, eaao7005 (2018).

    Article  Google Scholar 

  20. H. Liu, Y. Hu, B. Zhu, W. Matusik, and E. Sifakis, ACM Trans. Graph. 37, 2511 (2018).

    Google Scholar 

  21. G.R. Harik, F.G. Lobo, D.E. Goldberg, in 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360) (1998), pp. 523–528.

  22. S. Tang, H. Jin, C. Fang, Z. Wang, V.R. de Sa, in 6th International Conference on Learning Representations (2018).

  23. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (Cambridge, MA: The MIT Press, 2016).

    MATH  Google Scholar 

  24. L. Le, A. Patterson, and M. White, Advances in Neural Information Processing Systems 31, ed. S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Red Hook: Curran Associates Inc, 2018), pp. 107–117.

    Google Scholar 

  25. T.N. Kipf, M. Welling, arXiv:1611.07308 [Cs, Stat] (2016).

  26. T.N. Kipf, M. Welling, arXiv:1609.02907 [Cs, Stat] (2016).

  27. M. Defferrard, X. Bresson, and P. Vandergheynst, Advances in Neural Information Processing Systems 29, ed. D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, and R. Garnett (Red Hook: Curran Associates Inc, 2016), pp. 3844–3852.

    Google Scholar 

  28. M. Fatemi, P. Setoodeh, and S. Haykin, J. Complex Netw. 5, 433 (2017).

    MathSciNet  Google Scholar 

  29. J. Tallon, E. Cyr, A. Lloyd, and M. Mohammadi, Eng. Fail. Anal. 108, 104231 (2019).

    Article  Google Scholar 

  30. N. Després, E. Cyr, and M. Mohammadi, Proc. IMechE 233, 1814 (2019).

    Google Scholar 

  31. E. Cyr, A. Lloyd, and M. Mohammadi, J. Manuf. Process. 35, 289 (2018).

    Article  Google Scholar 

  32. D.P. Kingma, J. Ba, arXiv:1412.6980 [Cs] (2014).

  33. X. Glorot, Y. Bengio, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (2010), pp. 249–256.

Download references

Acknowledgements

The authors thank Natural Sciences and Engineering Research Council of Canada (NSERC) Grant No. RGPIN-2016-04221, New Brunswick Innovation Foundation (NBIF) Grant No. RIF2017-071, Atlantic Canada Opportunities Agency (ACOA)-Atlantic Innovation Fund (AIF) Project No. 210414, and Mitacs Accelerate Program Grant No. IT10669 for providing sufficient funding to execute this work. E.C. thanks The McCain Foundation for providing enough funding through The McCain Foundation Postdoctoral Fellowship in Innovation program to conduct this work. P.S. thanks The Harrison McCain Foundation for providing enough funding through The Harrison McCain Visiting Professorship program to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Després, N., Cyr, E., Setoodeh, P. et al. Deep Learning and Design for Additive Manufacturing: A Framework for Microlattice Architecture. JOM 72, 2408–2418 (2020). https://doi.org/10.1007/s11837-020-04131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04131-6

Navigation