Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Real-time accurate free-form deformation in terms of triangular Bézier surfaces

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

We implemented accurate FFD in terms of triangular Bézier surfaces as matrix multiplications in CUDA and rendered them via OpenGL. Experimental results show that the proposed algorithm is more efficient than the previous GPU acceleration algorithm and tessellation shader algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C Chua, U Neumann. Hardware-accelerated free-form deformation, In: ACM SIGGRAPH Workshop on Graph Hardware (Interlaken, Seitzerland, 2000), HWWS Conf Proc, 2000, 33–39.

    Google Scholar 

  2. Y Cui, J Feng. Real-time B-spline Free-Form Deformation via GPU acceleration, Comput Graph, 2013, 37(12): 1–11.

    Article  Google Scholar 

  3. T De Rose. Composing Bézier simplexes, ACM Trans Graph, 1988, 7(3): 198–221.

    Article  Google Scholar 

  4. T De Rose, R Goldman, H Hagen, S Mann. Functional composition algorithms via blossoming, ACM Trans Graph, 1993, 12(2): 113–135.

    Article  Google Scholar 

  5. G Farin. Curves and surfaces for CAGD: a practical guide, San Francisco, Morgan Kaufmann Publishers Inc., 2002.

    Google Scholar 

  6. J Feng, P A Heng, T T Wong. Accurate B-spline free-form deformation of polygonal objects, J Graph Tools, 1998, 3(3): 11–27.

    Article  Google Scholar 

  7. J Feng, Q Peng. Accelerating accurate b-spline free-form deformation of polygonal objects, J Graph Tools, 2000, 5(1): 1–8.

    Article  Google Scholar 

  8. J Feng, T Nishita, X Jin, Q Peng. B-spline free-form deformation of polygonal object as trimmed Bézier surfaces, Visual Comput, 2002, 18: 493–510.

    Article  Google Scholar 

  9. J E Gain, N A Dodgson. Adaptive Refinement and Decimation under Free-Form Deformation, In: Eurographics (Cambridge, 1999), Eurograph Conf Proc, 1999, 17: 13–15.

    Google Scholar 

  10. J E Gain, D Bechmann. A survey of spatial deformation from a user-centered perspective, ACM Trans Graph, 2008, 27(4): 1–21.

    Article  Google Scholar 

  11. J Griessmair, W Purgathofer. Deformation of Solids with Trivariate B-Splines, In: Eurographics (North Holland, 1989), Eurograph Conf Proc, 1989, 137–148.

    Google Scholar 

  12. S Hahmann, G P Bonneau, S Barbier, G Elber, H Hagen. Volume-preserving FFD for programmable graphics hardware, Visual Comput, 2012, 28: 231–245.

    Article  Google Scholar 

  13. S M Hu, H Zhang, C L Tai, J G Sun. Direct manipulation of FFD: efficient explicit solutions and decomposible multiple point constraints, Visual Comput, 2001, 17(6): 370–379.

    MATH  Google Scholar 

  14. K C Hui. Free-form design using axial curve-pairs, Comput Aided Design, 2002, 34(8): 583–595.

    Article  MathSciNet  Google Scholar 

  15. Y Jung, H Graf, J Behr, A Kuijper. Mesh Deformations in X3D via CUDA with Freeform Deformation Lattices, Virtual and Mixed Reality — Systems and Applications, Lecture Notes in Comput Sci, 2011(6774): 343–351.

    Chapter  Google Scholar 

  16. M Modat, G R Ridgway, Z A Taylor, A Zeike, M Lehmann, J Barnes, D J Hawkes, N C Fox, S Ourselin. Fast free-form deformation using graphics processing units, Comput Methods Prog Biomed, 2010, 98(3): 278–284.

    Article  Google Scholar 

  17. NVIDIA. Chapter 1: Introduction, CUDA C PROGRAMMING GUIDE, 2014.

    Google Scholar 

  18. NVIDIA. cuBLAS, Nvidia developer zone, https://developer.nvidia.com/cublas, 2013.

    Google Scholar 

  19. KHRONOS. OpenCL, OpenCL overview, http://www.khronos.org/opencl/, 2013.

    Google Scholar 

  20. S R Parry. Free-form deformation in a constructive solid geometry modeling system, Ph.D Thesis, Brigham Young University, 1986.

    Google Scholar 

  21. T W Sederberg, S R Parry. Free-form deformation of solid geometric models, SIGGRAPH Comput Graph, 1986, 20(4): 151–160.

    Article  Google Scholar 

  22. S Schein, G Elber. Real-time Free-form Deformation using Programmable Hardwares, Int J Shape Model, 2006, 12: 179–192.

    Article  MATH  Google Scholar 

  23. G Xu, K C Hui, W B Ge, G Z Wang. Direct manipulation of free-form deformation using curvepairs, Comput Aided Design, 2013, 45(3): 605–614.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-qing Feng.

Additional information

Supported by the National Natural Science Foundation of China (61170138 and 61472349).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Ym., Feng, Jq. Real-time accurate free-form deformation in terms of triangular Bézier surfaces. Appl. Math. J. Chin. Univ. 29, 455–467 (2014). https://doi.org/10.1007/s11766-014-3239-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-014-3239-6

MR Subject Classification

Keywords

Navigation