Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Tracking occluded objects using chromatic co-occurrence matrices and particle filter

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In the computer vision field, many real-world applications are based on detecting and tracking moving objects. One of the most important challenges in these applications is tracking occluded objects. Actually, when two or multiple objects occlude, the used tracking system suffers from information loss which negatively influences its tracking performance. The present paper introduces a new method to overcome this problem using only one target image and without any classification or learning phase. Indeed, a tracking system is established by combining the chromatic co-occurrence matrices and the particle filter in order to evaluate the occluded target position. The qualitative and quantitative studies show that the results obtained by the proposed approach are very competitive in comparison with several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gabriel, P.F., Verly, J.G., Piater, J.H., Genon, A.: The state of the art in multiple object tracking under occlusion in video sequences. In: Advanced Concepts for Intelligent Vision Systems (ACIVS), pp. 166–173. Ghent, Belgium (2003)

  2. Zhou, Y., Tao, H.: A background layer model for object tracking through occlusion. In: Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1079–1085. Nice, France (2003)

  3. Jepson, A.D., Fleet, D.J., Black, M.J.: A layered motion representation with occlusion and compact spatial support. In: ECCV 2002, pp. 692–706. Copenhagen, Denmark (2002)

  4. Yilmaz, A., Li, X., Shah, M.: Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1531–1536 (2004)

    Article  Google Scholar 

  5. MacCormick, J., Blake, A.: A probabilistic exclusion principle for tracking multiple objects. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, pp. 572–578, vol. 1. Kekyra, Greece (1999)

  6. Wu, B., Nevatia, R.: Tracking of multiple, partially occluded humans based on static body part detection. In: IEEE computer society conference on computer vision and pattern recognition, vol. 1, pp. 951–958. New York, USA (2006)

  7. Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. Int. J. Comput. Vis. 75(2), 247–266 (2007)

    Article  Google Scholar 

  8. Senior, A., Hampapur, A., Tian, Y.-L., Brown, L., Pankanti, S., Bolle, R.: Appearance models for occlusion handling. Image Vis. Comput. 24(11), 1233–1243 (2006)

    Article  Google Scholar 

  9. Ding, J., Tang, Y., Tian, H., Liu, W., Huang, Y.: Robust tracking with adaptive appearance learning and occlusion detection. Multimed. Syst. 22, 1–15 (2015)

    Google Scholar 

  10. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern SMC–3(6), 610–621 (1973)

    Article  Google Scholar 

  11. Penatti, O.A.B., Valle, E., da Torres, R.: Comparative study of global color and texture descriptors for web image retrieval, J. Vis. Commun. Image Represent. 23(2), 359–380 (2012)

    Article  Google Scholar 

  12. Upneja, R., Singh, C.: Fast computation of Jacobi–Fourier moments for invariant image recognition. Pattern Recognit. 48(5), 1836–1843 (2015)

    Article  MATH  Google Scholar 

  13. Tahmasbi, A., Saki, F., Shokouhi, S.B.: Classification of benign and malignant masses based on Zernike moments. Comput. Biol. Med. 41(8), 726–735 (2011)

    Article  Google Scholar 

  14. Skrzypniak, M., Macaire, L., Postaire, J.-G.: Indexation d’images de personnes par analyse de matrices de co-occurrences couleur. In: Actes CORESA’00 Journ. D’études D’échanges Compression Représentation Signaux Audiov, pp. 411 – 418. Poitiers, France (2000)

  15. Muselet, D.: Reconnaissance automatique d’objets sous éclairage non contrôlé par analyse d’images couleur. Ph.D. thesis, Lille 1 University, France (2005)

  16. Jaward, M., Mihaylova, L., Canagarajah, N., Bull, D.: Multiple object tracking using particle filters. In: IEEE Aerospace Conference, pp. 1–8. Montana, USA (2006)

  17. Shan, C., Wei, Y., Tan, T., Ojardias, F.: Real time hand tracking by combining particle filtering and mean shift. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 669–674. Seoul, South Korea (2004)

  18. Medeiros, H., Park, J., Kak, A.: A parallel color-based particle filter for object tracking. In: IEEE Computer Vision and Pattern Recognition Workshops (CVPRW ’08), pp. 1–8, Anchorage, Alaska (2008)

  19. Nummiaro, K., Koller-Meier, E., Van Gool, L.: An adaptive color-based particle filter. Image Vis. Comput. 21(1), 99–110 (2003)

    Article  MATH  Google Scholar 

  20. BoBoT: http://www.iai.uni-bonn.de/~kleind/tracking/index.htm. Accessed May 2016

  21. PETS2000: ftp://ftp.pets.rdg.ac.uk/pub/PETS2000/. Accessed May 2016

  22. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  23. VTB: http://cvlab.hanyang.ac.kr/tracker_benchmark/. Accessed Jan 2018

  24. Wu, Y., Shen, B., Ling, H.: Online robust image alignment via iterative convex optimization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1808–1814. Providence, Rhode Island (2012)

  25. Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. Int. J. Comput. Vis. 111(2), 213–228 (2014)

    Article  MathSciNet  Google Scholar 

  26. Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2007)

    Google Scholar 

  27. Zhang, K., Zhang, L., Yang, M.H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)

    Article  Google Scholar 

  28. Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1910–1917. Providence, Rhode Island (2012)

  29. Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1177–1184. Colorado Springs (2011)

  30. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1838–1845. Colorado Springs (2011)

  31. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: European Conference on Computer Vision (ECCV), pp. 702–715. Firenze, Italy (2012)

  32. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust L1 tracker using accelerated proximal gradient approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837. Providence, Rhode Island (2012)

  33. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1822–1829. Providence, Rhode Island. (June 2012)

  34. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2042–2049. Providence, Rhode Island (2012)

  35. VIVID Tracking Evaluation Web Site: http://vision.cse.psu.edu/data/vividEval/main.html. Accessed 01 Nov 2017

  36. Collins, R., Zhou, X., Teh, S.K.: An open source tracking testbed and evaluation web site. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, vol. 35. Beijing (2005)

  37. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  38. Zhang, B., et al.: Output constraint transfer for kernelized correlation filter in tracking. IEEE Trans. Syst. Man Cybern. Syst. 47(4), 693–703 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Elafi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 2128 KB)

Supplementary material 2 (avi 4634 KB)

Supplementary material 3 (avi 1426 KB)

Supplementary material 4 (avi 7975 KB)

Supplementary material 5 (avi 4533 KB)

Supplementary material 6 (avi 1479 KB)

Supplementary material 7 (avi 1517 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elafi, I., Jedra, M. & Zahid, N. Tracking occluded objects using chromatic co-occurrence matrices and particle filter. SIViP 12, 1227–1235 (2018). https://doi.org/10.1007/s11760-018-1273-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1273-1

Keywords

Navigation