Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the analysis of ant colony optimization for the maximum independent set problem

  • Letter
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Conclusions

In the present work, we contribute to the theoretical understanding of a kind of ACO algorithm by investigating the classic maximum independent set problem. Our theoretical results show that with a new construction graph, the ACO algorithm can obtain an approximation ability on maximum independent set problem, and also show the impact of the parameter settings. We first obtain two general upper bounds on arbitrary maximum independent set instance, then we obtain an approximation ratio by ACO algorithm in polynomial time. Finally, we give an instance on which ACO algorithm can escape from local optimum in polynomial time while the local search algorithm is easy to get stuck in local optimum. In the future, we will extend the running time analysis to pheromone evaporation factor, and make in-depth analysis of the impact of pheromone value on the running time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Neumann F, Witt C. Bioinspired Computation in Combinatorial Optimization — Algorithms and Their Computational Complexity. Springer Science & Business Media, 2010

  2. Zhou Z H, Yu Y, Qian C. Evolutionary Learning: Advances in Theories and Algorithms. Singapore: Springer, 2019

    Book  Google Scholar 

  3. Garey M R, Johnson D S. Computers and Intractability: A Guide to The Theory of NP-completeness. New York, NY: Freeman, 1979

    MATH  Google Scholar 

  4. Pat A. Ant colony optimization and hypergraph covering problems. In: Proceedings of the IEEE Congress on Evolutionary Computation. 2014, 1714–1720

  5. Xia X, Zhou Y. Performance analysis of ACO on the quadratic assignment problem. Chinese Journal of Electronics, 2018, 27(1): 26–34

    Article  Google Scholar 

  6. Kötzing T, Neumann F, Roglin H. Theoretical analysis of two ACO approaches for the traveling salesman problem. Swarm Intelligence, 2012, 6: 1–21

    Article  Google Scholar 

  7. Khanna S, Motwani R, Sudan M, Vazirani U. On syntactic versus computational views of approximability. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science. 1994, 819–836

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61703183, 61773410 and 61876207), the Public Welfare Technology Application Research Plan of Zhejiang Province (LGG19F030010), and the Science and Technology Program of Guangzhou (202002030260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Xia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Peng, X. & Liao, W. On the analysis of ant colony optimization for the maximum independent set problem. Front. Comput. Sci. 15, 154329 (2021). https://doi.org/10.1007/s11704-020-9464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11704-020-9464-7

Navigation