Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Thermoelectric Properties of n-Type Bi2Te3/PbSe0.5Te0.5 Segmented Thermoelectric Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To investigate the effects of segmentation of thermoelectric materials on performance levels, n-type segmented Bi2Te3/PbSe0.5Te0.5 thermoelectric material was fabricated, and its output power was measured and compared with those of Bi2Te3 and PbSe0.5Te0.5. The two materials were bonded by diffusion bonding with a diffusion layer that was ∼18 μm thick. The electrical conductivity, Seebeck coefficient, and power factor of the segmented Bi2Te3/PbSe0.5Te0.5 sample were close to the average of the values for Bi2Te3 and PbSe0.5Te0.5. The output power of Bi2Te3 was higher than those of PbSe0.5Te0.5 and the segmented sample for small ΔT (300 K to 400 K and 300 K to 500 K), but that of the segmented sample was higher than those of Bi2Te3 and PbSe0.5Te0.5 when ΔT exceeded 300 K (300 K to 600 K and 300 K to 700 K). The output power of the segmented sample was about 15% and 73% higher than those of the Bi2Te3 and PbSe0.5Te0.5 samples, respectively, when ΔT was 400 K (300 K to 700 K). The efficiency of thermoelectric materials for large temperature differences can be enhanced by segmenting materials with high performance in different temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC/Taylor & Francis, 2006).

    Google Scholar 

  2. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Mater. Sci. 37, 14 (2002).

    Article  Google Scholar 

  3. G.J. Snyder, Appl. Phys. Lett. 84, 13 (2004).

    Article  Google Scholar 

  4. G. Zhang and B.W. Li, Nanoscale 2, 7 (2010).

    Google Scholar 

  5. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 2 (2008).

    Article  Google Scholar 

  6. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 19 (1993).

    Google Scholar 

  7. L.D. Hicks, T.C. Harman, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 53, 16 (1996).

    Article  Google Scholar 

  8. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 6856 (2001).

    Article  Google Scholar 

  9. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 5590 (2002).

    Article  Google Scholar 

  10. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 7175 (2008).

    Article  Google Scholar 

  11. R. Venkatasubramanian, Phys. Rev. B 61, 4 (2000).

    Article  Google Scholar 

  12. G.J. Snyder and T.S. Ursell, Phys. Rev. Lett. 91, 14 (2003).

    Google Scholar 

  13. J.L. Cui, Mater. Lett. 57, 24–25 (2003).

    Google Scholar 

  14. G. Zeng, J.H. Bahk, J.E. Bowers, H. Lu, J.M.O. Zide, A.C. Gossard, R. Singh, Z. Bian, A. Shakouri, S.L. Singer, W. Kim, and A. Majumdar, J. Electron. Mater. 37, 12 (2008).

    Article  Google Scholar 

  15. G. Zeng, J.H. Bahk, J.E. Bowers, H. Lu, A.C. Gossard, S.L. Singer, A. Majumdar, Z.X. Bian, M. Zebarjadi, and A. Shakouri, Appl. Phys. Lett. 95, 8 (2009).

    Google Scholar 

  16. T.S. Oh, J. Electron. Mater. 38, 7 (2009).

    Google Scholar 

  17. P.L. Ratnaparkhi and J.M. Howe, Acta Metall. Mater. 42, 3 (1994).

    Article  Google Scholar 

  18. P. He, J.H. Zhang, R.L. Zhou, and X.Q. Li, Mater. Charact. 43, 5 (1999).

    Article  Google Scholar 

  19. L.D. Zhao, B.P. Zhang, J.F. Li, M. Zhou, and W.S. Liu, Phys. B 400, 1–2 (2007).

    Article  Google Scholar 

  20. J.Q. Li, S.P. Li, Q.B. Wang, L. Wang, F.S. Liu, and W.Q. Ao, J. Alloy. Compd. 509, 13 (2011).

    Article  Google Scholar 

  21. C.W. Nan, Prog. Mater Sci. 37, 1 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, S., Cho, JY., Koo, H. et al. Thermoelectric Properties of n-Type Bi2Te3/PbSe0.5Te0.5 Segmented Thermoelectric Material. J. Electron. Mater. 43, 414–418 (2014). https://doi.org/10.1007/s11664-013-2869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2869-4

Keywords

Navigation