Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Identification schemes for unmanned excavator arm parameters

  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust parameter identification scheme for field applications. This paper presents the results of a research study on parameter identification for UE. Three identification methods, the Newton-Raphson method, the generalized Newton method, and the least squares method are used and compared for prediction accuracy, robustness to noise and computational speed. The techniques are used to identify the link parameters (mass, inertia, and length) and friction coefficients of the full-scale UE. Using experimental data from a full-scale field UE, the values of link parameters and the friction coefficient are identified. Some of the identified parameters are compared with measured physical values. Furthermore, the joint torques and positions computed by the proposed model using the identified parameters are validated against measured data. The comparison shows that both the Newton-Raphson method and the generalized Newton method are better in terms of prediction accuracy. The Newton-Raphson method is computationally efficient and has potential for real time application, but the generalized Newton method is slightly more robust to measurement noise. The experimental data were obtained in collaboration with QinetiQ Ltd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. S. Tafazoli, K. Hashtrudi-Zaad, S. E. Salcudean, P. D. Lawrence. Impedance Control of a Teleoperated Excavator. IEEE Transactions on Control Systems Technology, vol. 10, no. 3, pp. 355–367, 2002.

    Article  Google Scholar 

  2. Q. Ha, Q. Nguyen, D. Rye, H. Durrant-Whyte. Impedance Control of a Hydraulically Actuated Robotic Excavator. Automation in Construction Journal., vol. 9, no. 5–6, pp. 421–435, 2000.

    Article  Google Scholar 

  3. Q. Ha, M. Santos, Q. Nguyen, D. Rye, H. Durrant-Whyte. Robotic Excavation in Construction Automation. IEEE Robotics & Automation Magazine, vol. 9, no. 1, pp. 20–28, 2002.

    Article  Google Scholar 

  4. K. Hashtrudi-Zaad, S. E. Salcudean. Analysis of Control Architectures for Teleoperation Systems with Impedance/Admittance Master and Slave Manipulators. International Journal of Robotics Research, vol. 20, no. 6, pp. 419–445, 2001.

    Article  Google Scholar 

  5. M. L. Leuschen, I. D. Walker, J. R. Cavallaro. Investigation of Reliability of Hydraulic Robots for Hazardous Environments Using Analytic Redundancy. In Proceedings of IEEE Proceedings of Annual Reliability and Maintainability Symposium, IEEE Press, Washington D.C., USA, pp. 122–128, 1999.

    Google Scholar 

  6. Y. H. Zweiri, L. D. Seneviratne, K. A. Althoefer. Modelling and Control of an Unmanned Excavator Vehicle. Proceedings of the Institution of Mechanical Engineers-Part I: Journal of Systems and Control Engineering, vol. 217, no. 4, pp. 259–274, 2003.

    Article  Google Scholar 

  7. H. Mayeda, H. K. Yoshida, K. Osuka. Base Parameters of Manipulator Dynamic Models. IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 312–321, 1990.

    Article  Google Scholar 

  8. D. Ma, J. M. Hollerbach. Identifying Mass Parameters for Gravity Compensation and Automatic Torque Sensor Calibration. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE Press, Minneapolis, USA, vol. 1, pp. 661–666, 1996.

    Google Scholar 

  9. S. Tafazoli, P. D. Lawrence, S. E. Salcudean, D. Chan, S. Bachmann, C.W. De Silva. Parameter Estimation and Friction Analysis for a Mini Excavator. In Proceedings of IEEE International Conference on Robotics & Automation, IEEE Press, Minneapolis, USA, pp. 329–334, 1996.

    Google Scholar 

  10. K. Yoshida, N. Ikeda, H. Mayeda. Experimental Study of the Identification Methods for an Industrial Robot Manipulator. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots Systems, IEEE Press, Raleigh, USA, pp. 263–270, 1992.

    Chapter  Google Scholar 

  11. M. Khoshzaban, M. F. Sassani, P. D. Lawrence. Dynamic Calibration of Hydraulic Mobile Manipulators. In Proceedings of the 1st World Automation Congress, Maui HI, USA, pp. 255–262, 1994.

    Google Scholar 

  12. S. Tafazoli, P. D. Lawrence, S. E. Salcudean. Identification of Inertial and Friction Parameters for Excavator Arms. IEEE Transactions on Robotics and Automation, vol. 15, no. 5, pp. 966–971, 1999.

    Article  Google Scholar 

  13. M. M. Olsen, H. G. Petersen. A New Method for Estimating Parameters of a Dynamic Robot Model. IEEE Transactions on Robotics and Automation, vol. 17, no. 1, pp. 95–100, 2001.

    Article  Google Scholar 

  14. Y. H. Zweiri, L. D. Seneviratne, K. Althoefer. Parameters Estimation for Excavator Arm Using Generalized Newton Method. IEEE Transactions on Robotics and Automation, vol. 20, no. 4, pp. 762–767, 2004.

    Google Scholar 

  15. M. Gautier, W. Khalil. Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots. IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 368–373, 1990.

    Article  Google Scholar 

  16. W. Khalil, F. Bennis. Comments on Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots. IEEE Transactions on Robotics and Automation, vol. 10, no. 1, pp. 78–79, 1994.

    Article  Google Scholar 

  17. H. Hahn, M. Niebergall. Development of a Measurement Robot for Identifying all Inertia Parameters of a Rigid Body in a Single Experiment. IEEE Transactions on Control Systems Technology, vol. 9, no. 2, pp. 416–423, 2001.

    Article  Google Scholar 

  18. M. Grotjahn, M. Daemi, B. Heimann. Friction and Rigid Body Identification of Robot Dynamics. International Journal of Solids and Structures, vol. 38, no. 10–13, pp. 1889–1902, 2001.

    Article  MATH  Google Scholar 

  19. W. Verdonck, J. Swevers, J. C. Samin. Experimental Robot Identification: Advantages of Combining Internal and External Measurements and of Using Periodic Excitation. ASME Journal of Dynamic Systems, Measurement, and Control, vol. 123, no. 4, pp. 630–636, 2001.

    Article  Google Scholar 

  20. Y. H. Zweiri, L.D. Seneviratne, K. Althoefer. Mathematical Modelling of Closed-chain Manipulators on an Excavator Vehicle. Mathematical and Computer Modelling of Dynamical Systems Journal, vol. 12, no. 4, pp. 329–345, 2006.

    Article  MATH  Google Scholar 

  21. Y. Levin, A. Ben-Israel. A Newton Method for Systems of m Equations in n Variables. Nonlinear Analysis, vol. 47, no. 3, pp. 1961–1971, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Z. Nashed, X. Chen. Convergence of Newton-like Methods for Singular Operator Equations Using Outer Inverse. Numerische Mathematik, vol. 66, no. 1, pp. 235–257, 1993.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya H. Zweiri.

Additional information

This work was supported by the EPSRC (No. GR/R50738/01).

Yahya H. Zweiri is an assistant professor in the Department of Mechanical Engineering, Mu’tah University, Jordan. He received the Ph.D. degree from the Department of Mechanical Engineering, King’s College London, UK, in 2003. He has published over 18 refereed research papers in international journals.

He has over 9 years research experience in the machine intelligence, modelling, and estimation of mechanical systems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zweiri, Y.H. Identification schemes for unmanned excavator arm parameters. Int. J. Autom. Comput. 5, 185–192 (2008). https://doi.org/10.1007/s11633-008-0185-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-008-0185-x

Keywords

Navigation