Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings

  • Plant Physiology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In the present study, we present a signaling network involving H2O2, nitric oxide (NO), calcium (Ca2+), cyclic guanosine monophosphate (cGMP), and the mitogen-activated protein kinase (MAPK) cascade during adventitious rooting in mung bean seedlings. Both exogenous H2O2 and the NO donor sodium nitroprussiate were capable of promoting the formation and development of adventitious roots. H2O2 and NO signaling pathways were elicited in parallel in auxin-induced adventitious rooting. Cytosolic Ca2+ was required for adventitious rooting, and Ca2+ served as a downstream component of H2O2, as well as cGMP or MAPK, signaling cascades. cGMP and MAPK cascades function downstream of H2O2 signaling and depend on auxin responses in adventitious root signaling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Aeschbacher R. A.; Schiefelbein J. W.; Benfey P. N. The genetic and molecular basis of root development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 45: 25–45; 1994.

    Article  CAS  Google Scholar 

  • Agarwal S.; Sairam R. K.; Srivastava G. C.; Tyagi A.; Meena R. C. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci. 169: 559–570; 2005.

    Article  CAS  Google Scholar 

  • Alessi D. R.; Cuenda A.; Cohen P.; Dudley D. T.; Saltiel A. R. PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270: 27489–27494; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Bellamine J.; Penel C.; Greppin H.; Gaspar T. Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul. 26: 191–194; 1998.

    Article  CAS  Google Scholar 

  • Bright J.; Desikan R.; Hancock J. T.; Weir I. S.; Neill S. J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 45: 113–122; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Chen W. P.; Li P. H. Chilling induced Ca2+ over load enhances production of active oxygen species in maize (Zea mays L.) cultured cells: the effect of abscisic acid treatment. Plant Cell Environ. 24: 791–800; 2001.

    Article  CAS  Google Scholar 

  • Clarke A.; Desikan R.; Hurst R. D.; Hancock J. T.; Neill S. J. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 24: 667–677; 2000.

    Article  CAS  PubMed  Google Scholar 

  • De Klerk G. J.; Krieken W. V. D.; De Jong J. C. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev. Biol-Plant 35: 189–199; 1999.

    Article  Google Scholar 

  • Desikan R.; Cheung M. K.; Bright J.; Henson D.; Hancock J. T.; Neill S. J. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J. Exp. Bot. 55: 205–212; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Frietsch S.; Wang Y. F.; Sladek C.; Poulsen L. R.; Romanowsky S. M.; Schroeder J. I.; Harper J. F. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci. USA 104: 14531–14536; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Guo K. M.; Babourina O.; Christopher D. A.; Borsics T.; Rengel Z. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol. Plant. 134: 499–507; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Hu X.; Neill S. J.; Tang Z.; Cai W. Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol. 137: 663–670; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Hu X. L.; Jiang M. Y.; Zhang J. H.; Zhang A. Y.; Lin F.; Tan M. P. Calcium–calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol. 173: 27–38; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Hung K. T.; Hsu Y. T.; Kao C. H. Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves. Physiol. Plant. 127: 293–303; 2006.

    Article  CAS  Google Scholar 

  • Joo J. H.; Bae Y. S.; Lee J. S. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126: 1055–1060; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Kovtun Y.; Chiu W. L.; Tena G.; Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl Acad. Sci. USA 97: 2940–2945; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Levine A.; Tenhaken R.; Dixon R. A.; Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive response. Cell 79: 583–593; 1994.

    Article  CAS  PubMed  Google Scholar 

  • Li S. W.; Xue L. G.; Xu S. J.; Feng H. Y.; An L. Z. Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul. 52: 173–180; 2007.

    Article  CAS  Google Scholar 

  • Li S. W.; Xue L. G.; Xu S. J.; Feng H. Y.; An L. Z. Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ. Exp. Bot. 65: 63–71; 2009.

    Article  CAS  Google Scholar 

  • Liu J. H.; Mukherjee I.; Reid D. M. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene. Physiol. Plant. 78: 268–276; 1990.

    Article  CAS  Google Scholar 

  • McInnis S. M.; Desikan R.; Hancock J. T.; Hiscock S. J. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytol. 172: 221–228; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Melillo M. T.; Leonetti P.; Bongiovanni M.; Astagnone S. P.; Bleve Z. T. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato–root-knot nematode interactions. New Phytol. 170: 501–512; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Morris P. C. MAP kinase signal transduction pathway in plants. New Phytol. 151: 67–89; 2001.

    Article  CAS  Google Scholar 

  • Nag S.; Saha K.; Choudhuri M. A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul. 20: 182–194; 2001.

    Article  CAS  Google Scholar 

  • Neill S. J.; Desikan R.; Hancock J. T. Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5: 388–395; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cardenas M. L.; Ryan C. A. Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol. 130: 487–493; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat G. C.; Lanteri M. L.; Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. 132: 1241–1248; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat G. C.; Lanteri M. L.; Lombardo M. C. Nitric oxide mediates the indole acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135: 279–286; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Pei Z. M.; Murata Y.; Benning G.; Thomine S.; Klusener B.; Allen G. T.; Grill E.; Schroeder J. I. Calcium channels activated by hydrogen peroxide mediate abscisic signaling in guard cells. Nature 406: 731–734; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Potikha T. S.; Collins C. C.; Johnson D. I.; Delmer D. P.; Levine A. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119: 849–858; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Rentel M. C.; Knight M. R. Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol. 135: 1471–1479; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Rout G. R. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regul. 48: 111–117; 2006.

    Article  CAS  Google Scholar 

  • She X. P.; Huang A. X. Change of nitric oxide and NADPH-diaphorase during the generation and the development of adventitious roots in mung bean hypocotyls cuttings. Act Bot Sin 46: 1049–1055; 2004.

    CAS  Google Scholar 

  • Su G. X.; Zhang W. H.; Liu Y. L. Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. J. Integr. Plant Biol. 48: 426–432; 2006.

    Article  CAS  Google Scholar 

  • Syros T.; Yupsanis T.; Zafiriadis H.; Economou A. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J. Plant Physiol. 161: 69–77; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F.; Sato-Nara K.; Kobayashi K.; Suzuki M.; Suzuki H. Sugar-induced adventitious roots in Arabidopsis seedlings. J. Plant Res. 116: 83–91; 2003.

    CAS  PubMed  Google Scholar 

  • Toyota M.; Furuichi T.; Tatsumi H.; Sokabe M. Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol. 146: 505–514; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Xu J.; Xuan W.; Huang B. K.; Zhou Y. H.; Ling T. F.; Xu S.; Sheng W. B. Carbon monoxide-induced ARF of hypocotyl cutting from mung bean seedling. China Sci. Bull. 51: 668–674; 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (30960063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Weng Li.

Additional information

Editor: D. T. Tomes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SW., Xue, L. The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings. In Vitro Cell.Dev.Biol.-Plant 46, 142–148 (2010). https://doi.org/10.1007/s11627-009-9275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9275-x

Keywords

Navigation