Abstract
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In the present study, we present a signaling network involving H2O2, nitric oxide (NO), calcium (Ca2+), cyclic guanosine monophosphate (cGMP), and the mitogen-activated protein kinase (MAPK) cascade during adventitious rooting in mung bean seedlings. Both exogenous H2O2 and the NO donor sodium nitroprussiate were capable of promoting the formation and development of adventitious roots. H2O2 and NO signaling pathways were elicited in parallel in auxin-induced adventitious rooting. Cytosolic Ca2+ was required for adventitious rooting, and Ca2+ served as a downstream component of H2O2, as well as cGMP or MAPK, signaling cascades. cGMP and MAPK cascades function downstream of H2O2 signaling and depend on auxin responses in adventitious root signaling processes.
Similar content being viewed by others
References
Aeschbacher R. A.; Schiefelbein J. W.; Benfey P. N. The genetic and molecular basis of root development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 45: 25–45; 1994.
Agarwal S.; Sairam R. K.; Srivastava G. C.; Tyagi A.; Meena R. C. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci. 169: 559–570; 2005.
Alessi D. R.; Cuenda A.; Cohen P.; Dudley D. T.; Saltiel A. R. PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270: 27489–27494; 1995.
Bellamine J.; Penel C.; Greppin H.; Gaspar T. Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul. 26: 191–194; 1998.
Bright J.; Desikan R.; Hancock J. T.; Weir I. S.; Neill S. J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 45: 113–122; 2006.
Chen W. P.; Li P. H. Chilling induced Ca2+ over load enhances production of active oxygen species in maize (Zea mays L.) cultured cells: the effect of abscisic acid treatment. Plant Cell Environ. 24: 791–800; 2001.
Clarke A.; Desikan R.; Hurst R. D.; Hancock J. T.; Neill S. J. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 24: 667–677; 2000.
De Klerk G. J.; Krieken W. V. D.; De Jong J. C. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev. Biol-Plant 35: 189–199; 1999.
Desikan R.; Cheung M. K.; Bright J.; Henson D.; Hancock J. T.; Neill S. J. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J. Exp. Bot. 55: 205–212; 2004.
Frietsch S.; Wang Y. F.; Sladek C.; Poulsen L. R.; Romanowsky S. M.; Schroeder J. I.; Harper J. F. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci. USA 104: 14531–14536; 2007.
Guo K. M.; Babourina O.; Christopher D. A.; Borsics T.; Rengel Z. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol. Plant. 134: 499–507; 2008.
Hu X.; Neill S. J.; Tang Z.; Cai W. Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol. 137: 663–670; 2005.
Hu X. L.; Jiang M. Y.; Zhang J. H.; Zhang A. Y.; Lin F.; Tan M. P. Calcium–calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol. 173: 27–38; 2007.
Hung K. T.; Hsu Y. T.; Kao C. H. Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves. Physiol. Plant. 127: 293–303; 2006.
Joo J. H.; Bae Y. S.; Lee J. S. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126: 1055–1060; 2001.
Kovtun Y.; Chiu W. L.; Tena G.; Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl Acad. Sci. USA 97: 2940–2945; 2000.
Levine A.; Tenhaken R.; Dixon R. A.; Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive response. Cell 79: 583–593; 1994.
Li S. W.; Xue L. G.; Xu S. J.; Feng H. Y.; An L. Z. Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul. 52: 173–180; 2007.
Li S. W.; Xue L. G.; Xu S. J.; Feng H. Y.; An L. Z. Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ. Exp. Bot. 65: 63–71; 2009.
Liu J. H.; Mukherjee I.; Reid D. M. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene. Physiol. Plant. 78: 268–276; 1990.
McInnis S. M.; Desikan R.; Hancock J. T.; Hiscock S. J. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytol. 172: 221–228; 2006.
Melillo M. T.; Leonetti P.; Bongiovanni M.; Astagnone S. P.; Bleve Z. T. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato–root-knot nematode interactions. New Phytol. 170: 501–512; 2006.
Morris P. C. MAP kinase signal transduction pathway in plants. New Phytol. 151: 67–89; 2001.
Nag S.; Saha K.; Choudhuri M. A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul. 20: 182–194; 2001.
Neill S. J.; Desikan R.; Hancock J. T. Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5: 388–395; 2002.
Orozco-Cardenas M. L.; Ryan C. A. Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol. 130: 487–493; 2002.
Pagnussat G. C.; Lanteri M. L.; Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. 132: 1241–1248; 2003.
Pagnussat G. C.; Lanteri M. L.; Lombardo M. C. Nitric oxide mediates the indole acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135: 279–286; 2004.
Pei Z. M.; Murata Y.; Benning G.; Thomine S.; Klusener B.; Allen G. T.; Grill E.; Schroeder J. I. Calcium channels activated by hydrogen peroxide mediate abscisic signaling in guard cells. Nature 406: 731–734; 2000.
Potikha T. S.; Collins C. C.; Johnson D. I.; Delmer D. P.; Levine A. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119: 849–858; 1999.
Rentel M. C.; Knight M. R. Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol. 135: 1471–1479; 2004.
Rout G. R. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regul. 48: 111–117; 2006.
She X. P.; Huang A. X. Change of nitric oxide and NADPH-diaphorase during the generation and the development of adventitious roots in mung bean hypocotyls cuttings. Act Bot Sin 46: 1049–1055; 2004.
Su G. X.; Zhang W. H.; Liu Y. L. Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. J. Integr. Plant Biol. 48: 426–432; 2006.
Syros T.; Yupsanis T.; Zafiriadis H.; Economou A. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J. Plant Physiol. 161: 69–77; 2004.
Takahashi F.; Sato-Nara K.; Kobayashi K.; Suzuki M.; Suzuki H. Sugar-induced adventitious roots in Arabidopsis seedlings. J. Plant Res. 116: 83–91; 2003.
Toyota M.; Furuichi T.; Tatsumi H.; Sokabe M. Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol. 146: 505–514; 2008.
Xu J.; Xuan W.; Huang B. K.; Zhou Y. H.; Ling T. F.; Xu S.; Sheng W. B. Carbon monoxide-induced ARF of hypocotyl cutting from mung bean seedling. China Sci. Bull. 51: 668–674; 2006.
Acknowledgment
This work was supported by the National Natural Science Foundation of China (30960063).
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor: D. T. Tomes
Rights and permissions
About this article
Cite this article
Li, SW., Xue, L. The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings. In Vitro Cell.Dev.Biol.-Plant 46, 142–148 (2010). https://doi.org/10.1007/s11627-009-9275-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11627-009-9275-x