Abstract
In this work, we present a new method based on electrocardiogram signal processing to distinguish between the atrial fibrillation (AF) episodes that terminate immediately and those that sustain. The spectrogram of the atrial activity is computed and 12 numerical series of spectral parameters are constructed. The sample entropy (SampEn) of six series are relevant in the characterization of AF termination (p < 0.05). Furthermore, a combined discriminant analysis in both time and frequency domains is performed, which improves the univariant time–frequency analysis. The discriminant analysis achieves optimal combination of parameters so that the percentage of correctly classified recordings reaches 100% for the learning set and 93.33% for the test set. The main conclusion is that the combined analysis of time and frequency series regularity might be used to predict spontaneous termination of paroxysmal AF and could provide information about the organization of atrial activation in AF.
Similar content being viewed by others
References
Al-Khatib SM et al (2000) Observations on the transition from intermittent to permanent atrial fibrillation. Am Heart J 140(1):142–145
Alcaraz R, Rieta JJ (2008) A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation. Med Biol Eng Comput 47(7):625–635. doi:10.1007/s11517-008-0348-5
Auger F, Flandrin P, Gonçalvès P, Lemoine O (1996) Time–frequency toolbox for use with MATLAB. Centre National de la Recherche Scientifique
Bartels RH, Beatty JC, Barsky BA (1987) An introduction to splines for use in computer graphics and geometric modeling. Morgan Kauffman
Blomström-Lundqvist C, Scheinman MM, Aliot EM, Alpert JS et al (2003) ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias: executive summary. Circulation 108(15):1871–1909. doi:10.1016/j.ehj.2003.08.002
Bollmann A (2000) Quantification of electrical remodeling in human atrial fibrillation. Cardiovasc Res 47(2):207–209. doi:10.1016/S0008-6363(0000133-4)
Bollmann A, Lombardi F (2006) Electrocardiology of atrial fibrillation. IEEE Eng Med Biol Mag 25(6):15–23. doi:10.1109/EMB-M.2006.250504
Bollmann A, Husser D, Mainardi L, Lombardi F, Langley P, Murray A, Rieta JJ, Millet J, Olsson SB, Stridh M, Sörnmo L (2006) Analysis of surface electrocardiograms in atrial fibrillation: Techniques, research and clinical applications. Europace 8(11):911–926. doi:10.1093/europace/eul113
Cantini F, Conforti F, Varanini M, Chiarugi F, Vrouchos G (2004) Predicting the end of an atrial fibrillation episode: the physionet challenge. In: Conf Proc IEEE Comput Cardiol, pp 121–124
Castells F, Rieta JJ, Millet J, Zarzoso V (2005) Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Trans Biomed Eng 52(2):258–267. doi:10.1109/TBME.2004.840473
Castells F, Laguna P, Sörnmo L, Bollmann A, Millet J (2007) Principal Component Analysis in ECGs signal processing. EURASIP J Adv Sig Proc 2007:1–21. doi:10.1155/2007/74580
Chiarugi F, Varanini M, Cantini F, Conforti F, Vrouchos G (2007) Noninvasive ECG as a tool for predicting termination of paroxysmal atrial fibrillation. IEEE Trans Biomed Eng 54(8):1399–1406. doi:10.1109/TBME.2007.890741
Clayton RH, Murray A (1998) Comparison of techniques for time–frequency analysis of the ECG during human ventricular fibrillation. IEE Proc Sci Meas Technol 145(6):301–306
Cohen L (1989) Time–frequency distributions: a review. Proc IEEE 77:941–981
Fuster V, Ryden LE, Asinger RW et al (2006) CC/AHA/ESC guidelines for the management of patients with atrial fibrillation. Circulation 114(7):700–752. doi:10.1161/CIRCULATIONAHA.106.177292
Hayn D, Edegger K, Scherr P, Lercher P (2004) Automated prediction of spontaneous termination of atrial fibrillation from electrocardiograms. In: Conf Proc IEEE Comput Cardiol, pp 117–120
Hornero R, Abasolo D, Jimeno N, Sánchez CI, Poza J, Aboy M (2006) Variability, regularity and complexity of time series generated by schizophrenic patients and control subjects. IEEE Trans Biomed Eng 53(2):210–218. doi:10.1109/TBME.2005.862547
Huberty CJ (1994) Applied discriminant analysis. Wiley, New York
Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, Toronto, ISBN 0-471-405-40-X
Kerr CR, Humphries KH et al (2005) Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: results from the canadian registry of atrial fibrillation. Am Heart J 149(3):489–496. doi:10.1016/j.ahj.2004.09.053
Kneller J et al (2005) Mechanisms of atrial fibrillation termination by pure sodium channel blockade in an ionically realistic mathematical model. Circ Res 96(5):e35–e47. doi:10.1161/01.RES.0000160709.49633.2b
Krzanowski WJ (1988) Principles of multivariate analysis. Oxford University Press, London
Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. Am J Physiol 283(3):R789–R797. doi:10.1152/ajpregu.00069.2002
Lemay M, Ihara Z, Vesin JM, Kappenberger L (2004) Computers in cardiology/physionet challenge 2004 : AF classification based on clinical features. In: Conf Proc IEEE Comput Cardiol, pp 669–672
Moody GB (2004) Spontaneous termination of atrial fibrillation: a challenge from PhysioNet and computers in cardiology 2004. In: Conf Proc IEEE Comput Cardiol, pp 101–104
Mora C, Castells F, Ruiz R, Rieta JJ, Millet J, Sánchez C (2004) Prediction of spontaneous termination of atrial fibrillation using time frequency analysis of the atrial fibrillatory wave. In: Conf Proc IEEE Comput Cardiol, pp 109–112
Nielson E, Ahlberg JH, Walsh J (1967) The theory of splines and their applications. Academic Press, New York
Nilsson F, Stridh M, Bollman A, Sörnmo L (2004) Predicting spontaneous termination of atrial fibrillation with time–frequency information. In: Conf Proc IEEE Comput Cardiol, pp 657–660
Petrutiu S, Sahakian AV, Swiryn JN (2004) Analysis of the surface electrocardiogram to predict termination of atrial fibrillation: the 2004 Computers in Cardiology/PhysioNet Challenge. In: Conf Proc IEEE Comput Cardiol, pp 105–108
Pincus SM (1995) Approximate entropy (ApEn) as complexity measure. Chaos 5(1):110–117
Raine D, Langley P, Murray A, Dunuville A, Bourke JP (2004) Surface atrial frequency analysis in patients with atrial fibrillation: a tool for evaluating the effects of intervention. J Cardiovasc Electrophysiol 15(9):1021–1026. doi:10.1046/j.1540-8167.2004.04032.x
Richman JS, Moorman JR (2000) Physiological time series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049
Rieta JJ, Castells F, Sánchez C, Zarzoso V (2004) Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Trans Biomed Eng 51(7):1176–1186
Slocum J, Sahakian A, Swiryn S (1992) Diagnosis of atrial fibrillation from surface electrocardiogram based on computer-detected atrial activity. J Electrocardiol 25(1):1–8
Stridh M, Bollmann A, Olsson SB, Sörnmo L (2006) Detection and feature extraction of atrial tachyarrhythmias. IEEE Eng Med Biol Mag 25(6):31–39. doi:10.1109/EMB-M.2006.250506
Takahashi Y, Sanders P et al (2006) Organization of frequency spectra of atrial fibrillation: relevance to radiofrequency catheter ablation. J Cardiovasc Electrophysiol 17(4):382–388
Vayá C, Rieta JJ et al (2006) Prediction of atrial fibrillation termination by approximate entropy in the time–frequency domain. In: Conf Proc IEEE Comput Cardiol, pp 589–592
Acknowledgments
This work was supported by the projects TEC2007–64884 from the Spanish Ministry of Science and Innovation and PAID–05–08 from Universidad Politécnica de Valencia.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vayá, C., Rieta, J.J. Time and frequency series combination for non-invasive regularity analysis of atrial fibrillation. Med Biol Eng Comput 47, 687–696 (2009). https://doi.org/10.1007/s11517-009-0495-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-009-0495-3