Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Stented artery biomechanics and device design optimization

  • Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The deployment of a vascular stent aims to increase lumen diameter for the restoration of blood flow, but the accompanied alterations in the mechanical environment possibly affect the long-term patency of these devices. The primary aim of this investigation was to develop an algorithm to optimize stent design, allowing for consideration of competing solid mechanical concerns (wall stress, lumen gain, and cyclic deflection). Finite element modeling (FEM) was used to estimate artery wall stress and systolic/diastolic geometries, from which single parameter outputs were derived expressing stress, lumen gain, and cyclic artery wall deflection. An optimization scheme was developed using Lagrangian interpolation elements that sought to minimize the sum of these outputs, with weighting coefficients. Varying the weighting coefficients results in stent designs that prioritize one output over another. The accuracy of the algorithm was confirmed by evaluating the resulting outputs of the optimized geometries using FEM. The capacity of the optimization algorithm to identify optimal geometries and their resulting mechanical measures was retained over a wide range of weighting coefficients. The variety of stent designs identified provides general guidelines that have potential clinical use (i.e., lesion-specific stenting).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bedoya J, Meyer CA, Timmins LH, Moreno MR, Moore JE (2006) Effects of stent design parameters on normal artery wall mechanics. J Biomech Eng 128(5):757–765

    Article  Google Scholar 

  2. Berry JL, Manoach E, Mekkaoui C, Rolland PH, Moore JE Jr, Rachev A (2002) Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis. J Vasc Interv Radiol 13(1):97–105

    Article  Google Scholar 

  3. Berry JL, Santamarina A, Moore JEJ, Roychowdhury S, Routh WD (2000) Experimental and computational flow evaluation of coronary stents. Ann Biomed Eng 28(4):386–398

    Article  Google Scholar 

  4. Edelman ER, Rogers C (1998) Pathobiologic responses to stenting. Am J Cardiol 81(7A):4E–6E

    Article  Google Scholar 

  5. Harker LA (1987) Role of platelets and thrombosis in mechanisms of acute occlusion and restenosis after angioplasty. Am J Cardiol 60(3):20B–28B

    Article  MathSciNet  Google Scholar 

  6. He Y, Duraiswamy N, Frank AO, Moore JE Jr (2005) Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J Biomech Eng 127(4):637–647

    Article  Google Scholar 

  7. Higashida RT, Meyers PM, Phatouros CC, Connors JJ III, Barr JD, Sacks D (2004) Reporting standards for carotid artery angioplasty and stent placement. Stroke 35(5):e112–e134

    Article  Google Scholar 

  8. Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 127(1):166–180

    Article  Google Scholar 

  9. Humphrey JD, Kang T, Sakarda P, Anjanappa M (1993) Computer-aided vascular experimentation: a new electromechanical test system. Ann Biomed Eng 21(1):33–43

    Article  Google Scholar 

  10. Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G, Airoldi F, Chieffo A, Montorfano M, Carlino M, Michev I, Corvaja N, Briguori C, Gerckens U, Grube E, Colombo A (2005) Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. Jama 293(17):2126–2130

    Article  Google Scholar 

  11. Kastrati A, Dibra A, Eberle S, Mehilli J, Suarez de Lezo J, Goy JJ, Ulm K, Schomig A (2005) Sirolimus-eluting stents vs paclitaxel-eluting stents in patients with coronary artery disease: meta-analysis of randomized trials. Jama 294(7):819–825

    Article  Google Scholar 

  12. Kastrati A, Dirschinger J, Schomig A (2001) Restenosis in one lesion in patients with multilesion stenting occurs even when the companion lesion is free of restenosis. Catheter Cardiovasc Interv 53(2):287–288

    Article  Google Scholar 

  13. LaDisa JF Jr, Olson LE, Molthen RC, Hettrick DA, Pratt PF, Hardel MD, Kersten JR, Warltier DC, Pagel PS (2005) Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am J Physiol Heart Circ Physiol 288(5):H2465–H2475

    Article  Google Scholar 

  14. Lally C, Dolan F, Prendergast PJ (2005) Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech 38(8):1574–1581

    Article  Google Scholar 

  15. Migliavacca F, Petrini L, Colombo M, Auricchio F, Pietrabissa R (2002) Mechanical behavior of coronary stents investigated through the finite element method. J Biomech 35(6):803–811

    Article  Google Scholar 

  16. Nebeker JR, Virmani R, Bennett CL, Hoffman JM, Samore MH, Alvarez J, Davidson CJ, McKoy JM, Raisch DW, Whisenant BK, Yarnold PR, Belknap SM, West DP, Gage JE, Morse RE, Gligoric G, Davidson L, Feldman MD (2006) Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. J Am Coll Cardiol 47(1):175–181

    Article  Google Scholar 

  17. Reddy JN (2006) An introduction to the finite element method, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  18. Schwartz RS, Huber KC, Murphy JG, Edwards WD, Camrud AR, Vlietstra RE, Holmes DR (1992) Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 19(2):267–274

    Article  Google Scholar 

  19. Serruys PW, Kutryk MJ B (2000) Handbook of coronary stents, 3rd edn. Blackwell, Malden

    Google Scholar 

  20. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316(12):701–706

    Article  Google Scholar 

  21. Sumpio BE, Banes AJ (1988) Prostacyclin synthetic activity in cultured aortic endothelial cells undergoing cyclic mechanical deformation. Surgery 104(2):383–389

    Google Scholar 

  22. Sumpio BE, Banes AJ, Levin LG, Johnson G Jr (1987) Mechanical stress stimulates aortic endothelial cells to proliferate. J Vasc Surg 6(3):252–256

    Article  Google Scholar 

  23. Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O’Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P (2006) Heart disease and stroke statistics-2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113(6):e85–e151

    Article  Google Scholar 

  24. Versaci F, Gaspardone A, Tomai F, Crea F, Chiariello L, Gioffre PA (1997) A comparison of coronary-artery stenting with angioplasty for isolated stenosis of the proximal left anterior descending coronary artery. N Engl J Med 336(12):817–822

    Article  Google Scholar 

  25. Virmani R, Liistro F, Stankovic G, Di Mario C, Montorfano M, Farb A, Kolodgie FD, Colombo A (2002) Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation 106(21):2649–2651

    Article  Google Scholar 

  26. Vorp DA, Peters DG, Webster MW (1999) Gene expression is altered in perfused arterial segments exposed to cyclic flexure ex vivo. Ann Biomed Eng 27(3):366–371

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Moore Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmins, L.H., Moreno, M.R., Meyer, C.A. et al. Stented artery biomechanics and device design optimization. Med Bio Eng Comput 45, 505–513 (2007). https://doi.org/10.1007/s11517-007-0180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0180-3

Keywords

Navigation