Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A geometric interpretation of the Schützenberger group of a minimal subshift

  • Published:
Arkiv för Matematik

Abstract

The first author has associated in a natural way a profinite group to each irreducible subshift. The group in question was initially obtained as a maximal subgroup of a free profinite semigroup. In the case of minimal subshifts, the same group is shown in the present paper to also arise from geometric considerations involving the Rauzy graphs of the subshift. Indeed, the group is shown to be isomorphic to the inverse limit of the profinite completions of the fundamental groups of the Rauzy graphs of the subshift. A further result involving geometric arguments on Rauzy graphs is a criterion for freeness of the profinite group of a minimal subshift based on the Return Theorem of Berthé et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, J., Finite Semigroups and Universal Algebra, World Scientific, Singapore, 1995. English translation.

    Book  MATH  Google Scholar 

  2. Almeida, J., Finite semigroups: an introduction to a unified theory of pseudovarieties, in Semigroups, Algorithms, Automata and Languages, pp. 3–64, World Scientific, Singapore, 2002.

    Chapter  Google Scholar 

  3. Almeida, J., Profinite structures and dynamics, CIM Bull. 14 (2003), 8–18.

    Google Scholar 

  4. Almeida, J., Symbolic dynamics in free profinite semigroups, RIMS Kokyuroku 1366 (2004), 1–12.

    Google Scholar 

  5. Almeida, J., Profinite groups associated with weakly primitive substitutions, Fund. Prikl. Mat. (Fund. Appl. Math.) 11 (2005), 13–48, In Russian. English version in J. Math. Sci. 144 (2007), 3881–3903.

    MathSciNet  MATH  Google Scholar 

  6. Almeida, J., Profinite semigroups and applications, in Structural Theory of Automata, Semigroups and Universal Algebra, pp. 1–45, Springer, New York, 2005.

    Chapter  Google Scholar 

  7. Almeida, J. and Costa, A., Infinite-vertex free profinite semigroupoids and symbolic dynamics, J. Pure Appl. Algebra 213 (2009), 605–631.

    Article  MathSciNet  MATH  Google Scholar 

  8. Almeida, J. and Costa, A., On the transition semigroups of centrally labeled Rauzy graphs, Int. J. Algebra Comput. 22 (2012), 25 pages.

  9. Almeida, J. and Costa, A., Presentations of Schützenberger groups of minimal subshifts, Israel J. Math. 196 (2013), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  10. Almeida, J. and Volkov, M. V., Subword complexity of profinite words and subgroups of free profinite semigroups, Internat. J. Algebra Comput. 16 (2006), 221–258.

    Article  MathSciNet  MATH  Google Scholar 

  11. Almeida, J. and Weil, P., Profinite categories and semidirect products, J. Pure Appl. Algebra 123 (1998), 1–50.

    Article  MathSciNet  MATH  Google Scholar 

  12. Balková, L., Pelantová, E. and Steiner, W., Sequences with constant number of return words, Monatsh. Math. 155 (2008), 251–263.

    Article  MathSciNet  MATH  Google Scholar 

  13. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C. and Rindone, G., Acyclic, connected and tree sets, Monatsh. Math. 176 (2015), 521–550.

    Article  MathSciNet  MATH  Google Scholar 

  14. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C. and Rindone, G., Bifix codes and interval exchanges, J. Pure Appl. Algebra 219 (2015), 2781–2798.

    Article  MathSciNet  MATH  Google Scholar 

  15. Borceux, F., Handbook of Categorical Algebra. 1. Basic Category Theory, Encyclopedia of Mathematics and Its Applications 50, Cambridge University Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

  16. Clifford, A. H. and Preston, G. B., The Algebraic Theory of Semigroups, vol. I, Am. Math. Soc., Providence, RI, 1961.

    Book  MATH  Google Scholar 

  17. Costa, A., Conjugacy invariants of subshifts: an approach from profinite semigroup theory, Internat. J. Algebra Comput. 16 (2006), 629–655.

    Article  MathSciNet  MATH  Google Scholar 

  18. Costa, A., Semigrupos profinitos e dinâmica simbólica, Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, 2007.

  19. Costa, A. and Steinberg, B., Profinite groups associated to sofic shifts are free, Proc. Lond. Math. Soc. 102 (2011), 341–369.

    Article  MathSciNet  MATH  Google Scholar 

  20. Coulbois, T., Sapir, M. and Weil, P., A note on the continuous extensions of injective morphisms between free groups to relatively free profinite groups, Publ. Mat. 47 (2003), 477–487.

    Article  MathSciNet  MATH  Google Scholar 

  21. Damanik, D. and Solomyak, B., Some high-complexity Hamiltonians with purely singular continuous spectrum, Ann. Henri Poincaré 3 (2002), 99–105.

    Article  MathSciNet  MATH  Google Scholar 

  22. Durand, F., A characterization of substitutive sequences using return words, Discrete Math. 179 (1998), 89–101.

    Article  MathSciNet  MATH  Google Scholar 

  23. Durand, F., Host, B. and Skau, C., Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953–993.

    Article  MathSciNet  MATH  Google Scholar 

  24. Fogg, N. P., Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics 1794, Springer, Berlin, 2002.

    Book  MATH  Google Scholar 

  25. Glen, A. and Justin, J., Episturmian words: a survey, Theor. Inform. Appl. 43 (2009), 403–442.

    Article  MathSciNet  MATH  Google Scholar 

  26. Jones, P. R., Profinite categories, implicit operations and pseudovarieties of categories, J. Pure Appl. Algebra 109 (1996), 61–95.

    Article  MathSciNet  MATH  Google Scholar 

  27. Karoubi, M., \(K\) -Theory, Springer, Berlin, 1978.

    Book  MATH  Google Scholar 

  28. Lind, D. and Marcus, B., An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  29. Lothaire, M., Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  30. Lyndon, R. C. and Schupp, P. E., Combinatorial Group Theory, Springer, New York, 1977.

    Book  MATH  Google Scholar 

  31. Margolis, S., Sapir, M. and Weil, P., Irreducibility of certain pseudovarieties, Comm. Algebra 26 (1998), 779–792.

    Article  MathSciNet  MATH  Google Scholar 

  32. Queffélec, M., Substitution Dynamical Systems—Spectral Analysis, Lect. Notes in Math. 1294, Springer, Berlin, 1987.

    Book  MATH  Google Scholar 

  33. Rhodes, J. and Steinberg, B., Profinite semigroups, varieties, expansions and the structure of relatively free profinite semigroups, Internat. J. Algebra Comput. 11 (2002), 627–672.

    Article  MathSciNet  MATH  Google Scholar 

  34. Rhodes, J. and Steinberg, B., Closed subgroups of free profinite monoids are projective profinite groups, Bull. Lond. Math. Soc. 40 (2008), 375–383.

    Article  MathSciNet  MATH  Google Scholar 

  35. Ribes, L., Grupos profinitos y grafos topológicos, Publicacions de la Secció de Matemàtiques 4, pp. 1–64, Universitat Autònoma de Barcelona, Barcelona, 1977.

    Google Scholar 

  36. Ribes, L. and Zalesskiĭ, P. A., Profinite Groups, Ergeb. Math. Grenzgebiete 3 40, Springer, Berlin, 2000.

    Book  MATH  Google Scholar 

  37. Steinberg, B., Maximal subgroups of the minimal ideal of a free profinite monoid are free, Israel J. Math. 176 (2010), 139–155.

    Article  MathSciNet  MATH  Google Scholar 

  38. Tilson, B., Categories as algebra: an essential ingredient in the theory of monoids, J. Pure Appl. Algebra 48 (1987), 83–198.

    Article  MathSciNet  MATH  Google Scholar 

  39. Willard, S., General Topology, Addison–Wesley, Reading, MA, 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Almeida.

Additional information

Work partially supported respectively by CMUP (UID/MAT/00144/2013) and CMUC (UID/MAT/00324/2013), which are funded by FCT (Portugal) with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, J., Costa, A. A geometric interpretation of the Schützenberger group of a minimal subshift. Ark Mat 54, 243–275 (2016). https://doi.org/10.1007/s11512-016-0233-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-016-0233-7

Keywords

Navigation