Abstract
The first author has associated in a natural way a profinite group to each irreducible subshift. The group in question was initially obtained as a maximal subgroup of a free profinite semigroup. In the case of minimal subshifts, the same group is shown in the present paper to also arise from geometric considerations involving the Rauzy graphs of the subshift. Indeed, the group is shown to be isomorphic to the inverse limit of the profinite completions of the fundamental groups of the Rauzy graphs of the subshift. A further result involving geometric arguments on Rauzy graphs is a criterion for freeness of the profinite group of a minimal subshift based on the Return Theorem of Berthé et al.
Similar content being viewed by others
References
Almeida, J., Finite Semigroups and Universal Algebra, World Scientific, Singapore, 1995. English translation.
Almeida, J., Finite semigroups: an introduction to a unified theory of pseudovarieties, in Semigroups, Algorithms, Automata and Languages, pp. 3–64, World Scientific, Singapore, 2002.
Almeida, J., Profinite structures and dynamics, CIM Bull. 14 (2003), 8–18.
Almeida, J., Symbolic dynamics in free profinite semigroups, RIMS Kokyuroku 1366 (2004), 1–12.
Almeida, J., Profinite groups associated with weakly primitive substitutions, Fund. Prikl. Mat. (Fund. Appl. Math.) 11 (2005), 13–48, In Russian. English version in J. Math. Sci. 144 (2007), 3881–3903.
Almeida, J., Profinite semigroups and applications, in Structural Theory of Automata, Semigroups and Universal Algebra, pp. 1–45, Springer, New York, 2005.
Almeida, J. and Costa, A., Infinite-vertex free profinite semigroupoids and symbolic dynamics, J. Pure Appl. Algebra 213 (2009), 605–631.
Almeida, J. and Costa, A., On the transition semigroups of centrally labeled Rauzy graphs, Int. J. Algebra Comput. 22 (2012), 25 pages.
Almeida, J. and Costa, A., Presentations of Schützenberger groups of minimal subshifts, Israel J. Math. 196 (2013), 1–31.
Almeida, J. and Volkov, M. V., Subword complexity of profinite words and subgroups of free profinite semigroups, Internat. J. Algebra Comput. 16 (2006), 221–258.
Almeida, J. and Weil, P., Profinite categories and semidirect products, J. Pure Appl. Algebra 123 (1998), 1–50.
Balková, L., Pelantová, E. and Steiner, W., Sequences with constant number of return words, Monatsh. Math. 155 (2008), 251–263.
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C. and Rindone, G., Acyclic, connected and tree sets, Monatsh. Math. 176 (2015), 521–550.
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C. and Rindone, G., Bifix codes and interval exchanges, J. Pure Appl. Algebra 219 (2015), 2781–2798.
Borceux, F., Handbook of Categorical Algebra. 1. Basic Category Theory, Encyclopedia of Mathematics and Its Applications 50, Cambridge University Press, Cambridge, 1994.
Clifford, A. H. and Preston, G. B., The Algebraic Theory of Semigroups, vol. I, Am. Math. Soc., Providence, RI, 1961.
Costa, A., Conjugacy invariants of subshifts: an approach from profinite semigroup theory, Internat. J. Algebra Comput. 16 (2006), 629–655.
Costa, A., Semigrupos profinitos e dinâmica simbólica, Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, 2007.
Costa, A. and Steinberg, B., Profinite groups associated to sofic shifts are free, Proc. Lond. Math. Soc. 102 (2011), 341–369.
Coulbois, T., Sapir, M. and Weil, P., A note on the continuous extensions of injective morphisms between free groups to relatively free profinite groups, Publ. Mat. 47 (2003), 477–487.
Damanik, D. and Solomyak, B., Some high-complexity Hamiltonians with purely singular continuous spectrum, Ann. Henri Poincaré 3 (2002), 99–105.
Durand, F., A characterization of substitutive sequences using return words, Discrete Math. 179 (1998), 89–101.
Durand, F., Host, B. and Skau, C., Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953–993.
Fogg, N. P., Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics 1794, Springer, Berlin, 2002.
Glen, A. and Justin, J., Episturmian words: a survey, Theor. Inform. Appl. 43 (2009), 403–442.
Jones, P. R., Profinite categories, implicit operations and pseudovarieties of categories, J. Pure Appl. Algebra 109 (1996), 61–95.
Karoubi, M., \(K\) -Theory, Springer, Berlin, 1978.
Lind, D. and Marcus, B., An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
Lothaire, M., Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.
Lyndon, R. C. and Schupp, P. E., Combinatorial Group Theory, Springer, New York, 1977.
Margolis, S., Sapir, M. and Weil, P., Irreducibility of certain pseudovarieties, Comm. Algebra 26 (1998), 779–792.
Queffélec, M., Substitution Dynamical Systems—Spectral Analysis, Lect. Notes in Math. 1294, Springer, Berlin, 1987.
Rhodes, J. and Steinberg, B., Profinite semigroups, varieties, expansions and the structure of relatively free profinite semigroups, Internat. J. Algebra Comput. 11 (2002), 627–672.
Rhodes, J. and Steinberg, B., Closed subgroups of free profinite monoids are projective profinite groups, Bull. Lond. Math. Soc. 40 (2008), 375–383.
Ribes, L., Grupos profinitos y grafos topológicos, Publicacions de la Secció de Matemàtiques 4, pp. 1–64, Universitat Autònoma de Barcelona, Barcelona, 1977.
Ribes, L. and Zalesskiĭ, P. A., Profinite Groups, Ergeb. Math. Grenzgebiete 3 40, Springer, Berlin, 2000.
Steinberg, B., Maximal subgroups of the minimal ideal of a free profinite monoid are free, Israel J. Math. 176 (2010), 139–155.
Tilson, B., Categories as algebra: an essential ingredient in the theory of monoids, J. Pure Appl. Algebra 48 (1987), 83–198.
Willard, S., General Topology, Addison–Wesley, Reading, MA, 1970.
Author information
Authors and Affiliations
Corresponding author
Additional information
Work partially supported respectively by CMUP (UID/MAT/00144/2013) and CMUC (UID/MAT/00324/2013), which are funded by FCT (Portugal) with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020.
Rights and permissions
About this article
Cite this article
Almeida, J., Costa, A. A geometric interpretation of the Schützenberger group of a minimal subshift. Ark Mat 54, 243–275 (2016). https://doi.org/10.1007/s11512-016-0233-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11512-016-0233-7