Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Image restoration with shifting reflective boundary conditions

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In signal and image processing, we want to recover a faithful representation of an original scene from blurred, noisy image data. This process can be transformed mathematically into solving a linear system with a blurring matrix. Particularly, the blurring matrix is determined from not only a point spread function (PSF), which defines how each pixel is blurred, but also boundary conditions (BCs), which specify our assumptions on the data outside the domain of consideration. In this paper, we first propose shifting reflective BCs which preserve the continuity at the boundaries and, therefore, reduce ringing effects in the restored image. A Kronecker product approximation of the corresponding blurring matrix is then provided, regardless of symmetry requirement of the PSF. Finally, we demonstrate the efficiency of our approximation in an SVD-based regularization method by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain A K. Fundamentals of Digital Image Processing. Englewood Cliffs: Prentice-Hall, 1989

    MATH  Google Scholar 

  2. Andrews H, Hunt B. Digital Image Testoration. Englewood Cliffs: Prentice-Hall, 1977

    Google Scholar 

  3. Kamm J, Nagy J G. Optimal Kronecker product approximation of block Toeplitz matrices. SIAM J Matrix Anal A, 2000, 22: 155–172

    Article  MathSciNet  MATH  Google Scholar 

  4. Levinson N. The Wiener RMS (root mean square) error criterion in filter design and prediction. J Math Phys, 1946, 25: 261–278

    MathSciNet  Google Scholar 

  5. Kailath T, Sayed A H. Displacement structure: theory and applications. SIAM Rev, 1995, 37: 297–386

    Article  MathSciNet  MATH  Google Scholar 

  6. Ammar G S, Gragg W B. Superfast solution of real positive definite Toeplitz systems. SIAM J Matrix Anal A, 1988, 9: 61–76

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan R H, Ng M K. Conjugate gradient methods for Toeplitz systems. SIAM Rev, 1996, 38: 427–482

    Article  MathSciNet  MATH  Google Scholar 

  8. Kalouptsidis N, Carayannis G, Manolakis D. Fast algorithms for block Toeplitz matrices with Toeplitz entries. Signal Process, 1984, 6: 77–81

    Article  MathSciNet  Google Scholar 

  9. Gonzalez R C, Woods R E. Digital Image Processing. Reading, MA: Addison-Wesley, 1992

    Google Scholar 

  10. Ng M K, Chan R H, Tang W C. A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J Sci Comput, 1999, 21: 851–866

    Article  MathSciNet  MATH  Google Scholar 

  11. Nagy J G, Ng M K, Perrone L. Kronecker product approximations for image restoration with reflexive boundary conditions. SIAM J Matrix Anal A, 2004, 25: 829–841

    Article  MathSciNet  MATH  Google Scholar 

  12. Serra-Capizzano S. A note on antireflective boundary conditions and fast deblurring models. SIAM J Sci Comput, 2003, 25: 1307–1325

    Article  MathSciNet  Google Scholar 

  13. Perrone L. Kronecker product approximations for image restoration with anti-reflective boundary conditions. Numer Linear Algebra, 2006, 13: 1–22

    Article  MathSciNet  MATH  Google Scholar 

  14. Lagendijk R L, Biemond J. Iterative Identification and Restoration of Images. Dordrecht: Kluwer, 1991. 22

    Book  MATH  Google Scholar 

  15. Nagy J G, Kilmer M E. Kronecker product approximation for preconditioning in three-dimensional imaging applications. IEEE Trans Image Process, 2006, 15: 604–613

    Article  MathSciNet  Google Scholar 

  16. Rezghi M, Hosseini S M. Lanczos based preconditioner for discrete ill-posed problems. Computing, 2010, 88: 79–96

    Article  MathSciNet  MATH  Google Scholar 

  17. Loan C V, Pitsianis N. Approximation with Kronecker products. In: Moonen M S, Golub G H, eds. Linear Algebra for Large Scale and Real Time Applications. Dordrecht: Kluwer, 1993. 293–314

    Google Scholar 

  18. Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems. Dordrecht: Kluwer, 1996

    Book  MATH  Google Scholar 

  19. Hansen P C. Rank Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. Philadelphia: SIAM, 1997

    MATH  Google Scholar 

  20. Chung J, Nagy J G, O’Leary D P. A weighted-GCV method for Lanczos-Hybrid regularization. Electron Trans Numer Anal, 2010, 28: 149–167

    MathSciNet  Google Scholar 

  21. Viloche Bazán F S, Borges L S. GKB-FP: an algorithm for large-scale discrete ill-posed problems. BIT, 2010, 50: 481–507

    Article  MathSciNet  MATH  Google Scholar 

  22. Dowski E R, Cathey W T. Extended depth of field through wavefront coding. Appl Optics, 1995, 34: 1859–1866

    Article  Google Scholar 

  23. Björck A. Numerical Methods for Least Squares Problems. Philadelphia: SIAM, 1996

    Book  MATH  Google Scholar 

  24. Vogel C R. Computational Methods for Inverse Problems. Philadelphia: SIAM, 2002

    Book  MATH  Google Scholar 

  25. Hanke M. Conjugate Gradient Type Methods for Ill-Posed Problems. Harlow: Longman, 1995

    MATH  Google Scholar 

  26. O’Leary D P, Simmons J A. A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems. SIAM J Sci Stat Comput, 1981, 2: 474–489

    Article  MathSciNet  MATH  Google Scholar 

  27. Kilmer M E, O’Leary D P. Choosing regularization parameters in iterative methods for ill-posed problems. SIAM J Matrix Anal A, 2001, 22: 1204–1221

    Article  MathSciNet  MATH  Google Scholar 

  28. Kilmer M E, Hansen P C, Español M I. A projected-based approach to general form Tikhonov regularization. SIAM J Sci Comput, 2007, 29: 315–330

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang M F, Xia L, Shou G F, et al. Two hybrid regularization frameworks for solving the electrocardiography inverse problem. Phys Med Biol, 2008, 53: 5151–5164

    Article  Google Scholar 

  30. Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60: 259–268

    Article  MATH  Google Scholar 

  31. Paragios N, Chen Y, Faugeras O. Handbook of Mathematical Models in Computer Vision. New York: Springer, 2005

    MATH  Google Scholar 

  32. Nagy J G, Palmer K M, Perrone L. Iterative methods for image restoration: a Matlab object oriented approach. http://www.mathcs.emory.edu/~nagy/RestoreTools. 2002

    Google Scholar 

  33. Banham M R, Katsaggelos A K. Spatially adaptive wavelet-based multiscale image restoration. IEEE Trans Image Process, 1996, 5: 619–634

    Article  Google Scholar 

  34. Neelamani R, Choi H, Baraniuk R. ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans Signal Process, 2004, 52: 418–433

    Article  MathSciNet  Google Scholar 

  35. Wen Y W, Ng M K, Ching W K. Iterative algorithms based on decoupling of deblurring and denoising for image restoration. SIAM J Sci Comput, 2008, 30: 2655–2674

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TingZhu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Huang, T., Zhao, X. et al. Image restoration with shifting reflective boundary conditions. Sci. China Inf. Sci. 56, 1–15 (2013). https://doi.org/10.1007/s11432-011-4425-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4425-2

Keywords

Navigation