Abstract
The fourth generation (4G) mobile communication systems are offering service worldwide steadily. Although 4G systems could be loaded with much more services and data than previous systems, there is still a dramatic gap between the people’s practical requirements and what can be offered by the 4G technologies. Consequently, the research and development for the fifth generation (5G) systems have already been started. This article presents an overview of potential network architecture and highlights several promising techniques which could be employed in the future 5G systems. These techniques include non-orthogonal multiple access (NOMA), massive multiple input and multiple output (MIMO), cooperative communications and network coding, full duplex (FD), device-to-device (D2D) communications, millimeter wave communications, automated network organization, cognitive radio (CR), and green communications. The state-of-art and implementation issue of these techniques are also addressed.
Similar content being viewed by others
References
You X H, Körner U. Preface. Sci China Inf Sci, 2013, 56: 020300
Li Q C, Niu H N, Papathanassiou A T, et al. 5G network capacity: key elements and technologies. IEEE Veh Technol Mag, 2014, 9: 71–78
Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122–130
Tehrani M N, Uysal M, Yanikomeroglu H. Device-to-device communication in 5G cellular networks, challenges, solutions, and future directions. IEEE Commun Mag, 2014, 52: 86–92
Alexiou A. Wireless world 2020: radio interface challenges and technology enablers. IEEE Veh Technol Mag, 2014, 9: 46–53
ONF. White Paper on Software-Defined Networking: the New Norm for Networks, 2012
China Mobile Research Institute. White Paper on C-RAN: the Road Towards Green RAN Version 2.5, 2011
Chang G K, Liu C, Zhang L. Architecture and applications of a versatile small-cell, multi-service cloud radio access network using radio-over-fiber technologies. In: Proceedings of IEEE International Conference on Communications Workshops, Budapest, 2013. 879–883
Sabella D, Rost P, Sheng Y L, et al. RAN as a service: challenges of designing a flexible RAN architecture in a cloud-based heterogeneous mobile network. In: Proceedings of Future Network and Mobile Summit, Lisboa, 2013. 1–8
Rost P, Bernardos C J, Domenico A D, et al. Cloud technologies for flexible 5G radio access networks. IEEE Commun Mag, 2014, 52: 68–76
Ishii H, Kishiyama Y, Takahashi H. A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept. In: Proceedings of IEEE Globecom Workshops, Anaheim, 2012. 624–630
Ben Hadj Said S, Sama M R, Guillouard K, et al. New control plane in 3GPP LTE/EPC architecture for on-demand connectivity service. In: Proceedings of IEEE 2nd International Conference on Cloud Networking, San Francisco, 2013. 205–209
Wang Z X, Zhang W Y. A separation architecture for achieving energy-efficient cellular networking. IEEE Trans Wirel Commun, 2014, 13: 3113–3123
Bernardos C J, de la Oliva A, Serrano P, et al. An architecture for software defined wireless networking. IEEE Wirel Commun, 2014, 21: 52–61
Costa-Requena J. SDN integration in LTE mobile backhaul networks. In: Proceedings of International Conference on Information Networking, Phuket, 2014. 264–269
Saito Y, Benjebbour A, Kishiyama Y, et al. System level performance evaluation of downlink non-orthogonal multiple access (NOMA). In: Proceedings of IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications, London, 2013. 611–615
Nikopour H, Baligh H. Sparse code multiple access. In: Proceedings of IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications, London, 2013. 332–336
Cover T, Thomas J. Elements of Information Theory. 6th ed. New York: Wiley and Sons, 1991
Ding Z G, Yang Z, Fan P Z, et al. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process Lett, 2014, 21: 1501–1505
Larsson E G, Edfors O, Tufvesson F, et al. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 2014, 52: 186–195
Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2013, 30: 40–60
Yin H, Gesbert D, Filippou M, et al. A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J Sel Area Commun, 2013, 31: 264–273
Ngo H Q, Larsson E G. EVD-based channel estimations for multicell multiuser MIMO with very large antenna arrays. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, 2012. 1520–6149
Ma Z, Persson D, Larsson E G, et al. Multiple symbols soft-decision metrics for coded frequency-shift keying signals. Sci China Inf Sci, 2013, 56: 022305
Ashikhmin A, Marzetta T L. Pilot contamination precoding in multi-cell large scale antenna systems. In: Proceedings of IEEE International Symposium on Information Theory, Cambridge, 2012. 1137–1141
Gong J, Zhou S, Lau B K, et al. On precoding for overlapped clustering in a measured urban macrocellular environment. Sci China Inf Sci, 2013, 56: 022301
Hou X Y, Yang C Y, Lau B K. On channel quantization for multi-cell cooperative systems with limited feedback. Sci China Inf Sci, 2013, 56: 022308
3GPP TS 36.216 V10.0.0. Physical layer for relaying operation, 2010
Ding L H, Wu P, Wang H, et al. Lifetime maximization routing with network coding in wireless multihop networks. Sci China Inf Sci, 2013, 56: 022303
Xie G, Liu Y A, Gao J C, et al. Sort-based relay selection algorithm for decode-and-forward relay system. Sci China Inf Sci, 2013, 56: 022304
Larsson P, Rong H. Large-scale cooperative relay network with optimal coherent combining under aggregate relay power constraints. In: Proceedings of the Working Group 4, World Wireless Research Forum WWRFS meeting, Beijing, 2004
Jing Y D, Hassibi B. Distributed space-time coding in wireless relay networks. IEEE Trans Wirel Commun, 2006, 5: 3524–3536
Guo X, Xia X G. A distributed space-time coding in asynchronous wireless relay networks. IEEE Trans Wirel Commun, 2008, 7: 1812–1816
Nazer B, Gastpar M. Reliable physical layer network coding. Proc IEEE, 2011, 99: 438–460
Samsung. Application of network coding in LTE-advanced relay. 3GPP TSG-RAN WG1 #53b, R1-082327, Warsaw, 2008
Yu X B, Zhou T T, Rui Y, et al. Cross-layer design for cooperative MIMO systems with relay selection and imperfect CSI. Sci China Inf Sci, 2013, 56: 022312
Osseiran A, Doppler K, Ribeiro C, et al. Advances in device-to-device communications and network coding for IMT-advanced. In: Proceedings of ICT-MobileSummit Conference, Santander, 2009. 1–8
Wu Y, Zheng M, Fei Z S, et al. Outage probability analysis for superposition coded symmetric relaying. Sci China Inf Sci, 2013, 56: 022307
Lin D S, Xiao M, Li S Q. Packet combining based on cross-packet coding. Sci China Inf Sci, 2013, 56: 022302
Erez U, Zamir R. Achieving 1/2 log(1+SNR) on the AWGN channel with lattice encoding and decoding. IEEE Trans Inform Theory, 2004, 50: 2293–2314
Nazer B, Gastpar M. Compute-and-forward: Harnessing interference through structured codes. IEEE Trans Inform Theory, 2011, 57: 6463–6486
Wilson M P, Narayanan K, Pfister H, et al. Joint physical layer coding and network coding for bidirectional relaying. IEEE Trans Inform Theory, 2010, 11: 5641–5654
Nazer B, Gastpar M. Computation over multiple-access channels. IEEE Trans Inform Theory, 2007, 53: 3498–3516
Manssour J, Osseiran A, Slimane S B. Wireless network coding in multi-cell networks: analysis and performance. In: Proceedings of IEEE International Conference on Signal Processing and Communication Systems, Gold Coast, 2008, 1–6
Manssour J, Osseiran A, Slimane S B. Opportunistic relay selection for wireless network coding. In: Proceedings of IEEE 9th Malaysia International Conference on Communications, Kuala Lumpur, 2009. 102–106
Hausl C, Hagenauer J. Iterative network and channel decoding for the two-way relay channel. In: Proceedings of IEEE International Conference on Communications, Istanbul, 2006. 1568–1573
Hausl C, Schreckenbach F, Oikonomidis I, et al. Iterative network and channel decoding on a tanner graph. In: Proceedings of the 43rd Allerton Conference on Communication, Control, and Computing, Monticello, 2005. 2093–2102
Yang S C, Koetter R. Network coding over a noisy relay: a belief propagation approach. In: Proceedings of IEEE International Symposium on Information Theory, Nice, 2007. 801–804
Zhang S L, Liew S C. Channel coding and decoding in a relay system operated with physical-layer network coding. IEEE J Sel Area Commun, 2009, 27: 788–796
Choiy J I, Jainy M, Srinivasany K, et al. Achieving single channel, full duplex wireless communication. In: Proceedings of ACM Annual International Conference on Mobile Computing and Networking, Chicago, 2010. 1–12
Haneda K, Kahra E, Wyne S, et al. Measurement of loop-back interference channels for outdoor-to-indoor full-duplex radio relays. In: Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, 2010. 1–5
Riihonen T, Werner S, Wichman R. Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Trans Signal Process, 2011, 59: 5983–5993
Hua Y B, Liang P, Ma Y M, et al. A method for broadband full-duplex MIMO radio. IEEE Signal Process Lett, 2012, 19: 793–796
Knox M E. Single antenna full duplex communications using a common carrier. In: Proceedings of IEEE 13th Annual Wireless and Microwave Technology Conference, Cocoa Beach, 2012. 1–6
Duarte M, Sabharwal A. Full-duplex wireless communications using off-the-shelf radios: feasibility and first results. In: Proceedings of Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2010. 1558–1562
Phungamngern N, Uthansakul P, Uthansakul M. Digital and RF interference cancellation for single-channel fullduplex transceiver using a single antenna. In: Proceedings of 10th International Conference on Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology, Krabi, 2013. 1–5
McMichael J G, Kolodziej K E. Optimal tuning of analog self-interference cancellers for full-duplex wireless communication. In: Proceedings of 50th Annual Allerton Conference on Communication, Control, and Computing, Allerton, 2012. 246–251
Jain M, Choi J I, Kim T, et al. Practical, real-time, full duplex wireless. In: Proceedings of ACM Annual International Conference on Mobile Computing and Networking, Las Vegas, 2011. 3018–312
Brett K, Jorma L, Behnaam A. An analog baseband approach for designing full-duplex radios. In: Proceedings of 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2013. 987–991
Li S H, Murch R D. Full-duplex wireless communication using transmitter output based echo cancellation. In: Proceedings of IEEE Global Telecommunications Conference, Houston, 2011. 1–5
Li N, Zhu W H, Han H H. Digital interference cancellation in single channel, full duplex wireless communication. In: Proceedings of 8th International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, 2012. 1–4
Ahmed E, Eltawil A M, Sabharwal A. Self-interference cancellation with phase noise induced ICI suppression for full-duplex systems. In: Proceedings of IEEE Global Telecommunications Conference, Atlanta, 2013. 3384–3388
Anttila L, Korpi D, Syrjala V, et al. Cancellation of power amplifier induced nonlinear self-interference in full-duplex transceivers. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2013. 1193–1198
Ahmed E, Eltawil A M, Sabharwal A. Self-interference cancellation with nonlinear distortion suppression for fullduplex systems. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2013. 1199–1203
Korpi D, Anttila L, Syrjala V, et al. Widely-linear digital self-interference cancellation in direct-conversion full-duplex transceiver. IEEE J Sel Area Commun, 2014, 32: 1674–1687
Korpi D, Anttila L, Valkama M. Feasibility of in-band full-duplex radio transceivers with imperfect RF components: analysis and enhanced cancellation algorithms. In: Proceedings of 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Oulu, 2014. 532–538
Everett E, Sahai A, Sabharwal A. Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Trans Wirel Commun, 2014, 13: 680–694
van Liempd B, Debaillie B, Craninckx J, et al. RF self-interference cancellation for full-duplex. In: Proceedings of 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Oulu, 2014. 526–531
Ahmed E, Eltawil A M, Sabharwal A. Rate gain region and design tradeoffs for full-duplex wireless communications. IEEE Trans Wirel Commun, 2013, 12: 3556–3565
Li W, Lilleberg J, Rikkinen K. On rate region analysis of half- and full-duplex OFDM communication links. IEEE J Sel Area Commun, 2014, 32: 1688–1698
Day B.P, Margetts A R, Bliss D W, et al. Full-duplex bidirectional MIMO: achievable rates under limited dynamic range. IEEE Trans Signal Process, 2012, 60: 3702–3713
Cirik A, Rong Y, Hua Y. Achievable rates of full-duplex MIMO radios in fast fading channels with imperfect channel estimation. IEEE Trans Signal Process, 2014, 62: 3874–3886
Nguyen D, Tran L N, Pirinen P, et al. Precoding for full duplex multiuser MIMO systems: spectral and energy efficiency maximization. IEEE Trans Signal Process, 2013, 61: 4038–4050
Vaze C, Varanasi M. The degrees of freedom of MIMO networks with full-duplex receiver cooperation but no CSIT. IEEE Trans Inform Theory, 2014, 60: 5587–5596
Nguyen D, Tran L N, Pirinen P, et al. Transmission strategies for full duplex multiuser MIMO systems. In: Proceedings of IEEE International Conference on Communications, Ottawa, 2012. 6825–6829
Goyal S, Liu P, Hua S, et al. Analyzing a full-duplex cellular system. In: Proceedings of 47th Annual Conference on Information Sciences and Systems, Baltimore, 2013. 1–6
3GPP TR 23.703 V12.0.0. Study on architecture enhancements to support proximity-based services (ProSe), 2014
3GPP TR 36.843 V12.0.1. Study on LTE device to device proximity services; radio aspects, 2014
Wei L L, Hu R Q, Qian Y, et al. Enable device-to-device communications underlaying cellular networks: challenges and research aspects. IEEE Commun Mag, 2014, 52: 90–96
Janis P, Yu C H, Doppler K, et al. Device-to-device communication underlaying cellular communications systems. Int J Commun Netw Syst Sci, 2009, 2: 169–178
ITU-R P.676-10. Attenuation by atmospheric gases, 2013
Ben-Dor E, Rappaport T S, Qiao Y, et al. Millimeter wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In: Proceedings of IEEE Global Telecommunications Conference, Houston, 2011. 1–6
Rappaport T S, Ben-Dor E, Murdock J, et al. 38 GHz and 60 GHz angle-dependent propagation for cellular & peerto-peer wireless communications. In: Proceedings of IEEE International Conference on Communications, Ottawa, 2012. 4568–4573
Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 2013, 1: 335–349
Rappaport T S, Gutierrez F, Ben-Dor E, et al. Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans Antenn Propag, 2013, 61: 1850–1859
Zhao H, Mayzus R, Sun S, et al. 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 5163–5167
Azar Y, Wong G N, Wang K, et al. 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 5143–5147
Hur S Y, Kim T J, Love D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 2013, 61: 4391–4403
Roh W, Seol J Y, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106–113
Choi J. On coding and beamforming for large antenna arrays in mm-wave systems. IEEE Wirel Commun Lett, 2014, 3: 193–196
Wang H, Liu N, Li Z H, et al. A unified algorithm for mobility load balancing in 3GPP LTE multi-cell networks. Sci China Inf Sci, 2013, 56: 022311
3GPP TS 32.500 V12.0.0. Self-organizing networks (SON); concepts and requirements, 2014
Litjens R, Gunnarsson F, Sayrac B, et al. Self-management for unified heterogeneous radio access networks. In: Proceedings of IEEE 77th Vehicular Technology Conference, Dresden, 2013. 1–5
Gelabert X, Sayrac B, Jemaa S B. A performance evaluation framework for control loop interaction in Self Organizing Networks. In: Proceedings of IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications, Toronto, 2011. 263–267
Vlacheas P, Thomatos E, Tsagkaris K, et al. Operator-governed SON coordination in downlink LTE networks. In: Proceedings of Future Network & Mobile Summit, Berlin, 2012. 1–9
Tsagkaris K, Koutsouris N, Demestichas P, et al. SON Coordination in a unified management framework. In: Proceedings of IEEE 77th Vehicular Technology Conference, Dresden, 2013. 1–5
Gelabert X, Sayrac B, Ben J S. A heuristic coordination framework for self-optimizing mechanisms in LTE HetNets. IEEE Trans Veh Technol, 2014, 63: 1320–1334
Akyildiz I F, Lee WY, Vuran M C, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw, 2006, 50: 2127–2159
Yucek T, Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tut, 2009, 11: 116–130
Lei S T, Wang H Q, Shen L. Spectrum sensing based on goodness of fit tests. In: Proceedings of International Conference on Electronics, Communications and Control, Ningbo, 2011. 485–489
Rostami S, Arshad K, Moessner K. Order-statistic based spectrum sensing for cognitive radio. IEEE Commun Lett, 2012, 16: 592–595
Das D, Das S. A cooperative spectrum sensing scheme using multiobjective hybrid IWO/PSO algorithm in cognitive radio networks. In: Proceedings of International Conference on Issues and Challenges in Intelligent Computing Techniques, Ghaziabad, 2014. 225–230
Hattab G, Ibnkahla M. Multiband spectrum access: great promises for future cognitive radio networks. Proc IEEE, 2014, 102: 282–306
Christian I, Moh S, Chung I, et al. Spectrum mobility in cognitive radio networks. IEEE Commun Mag, 2012, 50: 114–121
Baldini G, Sturman T, Biswas A R, et al. Security aspects in software defined radio and cognitive radio networks: a survey and a way ahead. IEEE Commun Surv Tut, 2012, 14: 355–379
Duan L J, Min A W, Huang J W, et al. Attack prevention for collaborative spectrum sensing in cognitive radio networks. IEEE J Sel Area Commun, 2012, 30: 1658–1665
I C L, Rowell C, Han S F, et al. Toward green and soft: a 5G perspective. IEEE Commun Mag, 2014, 52: 6–73
IMT-2020(5G) Promotion Group. White Paper on 5G Vision and Requirements, 2014
Han C Z, Harrold T, Armour S, et al. Green radio: radio techniques to enable energy-efficient wireless networks. IEEE Commun Mag, 2011, 49: 46–54
Xu X Q, He G N, Zhang S Q, et al. On functionality separation for green mobile networks: concept study over LTE. IEEE Commun Mag, 2013, 51: 82–90
Hu R Q, Qian Y. An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Commun Mag, 2014, 52: 94–101
Su G, Hidell M, Abrahamsson H, et al. Resource management in radio access and IP-based core networks for IMT advanced and beyond. Sci China Inf Sci, 2013, 56: 022310
Chai R, Wang X J, Chen Q B, et al. Utility-based bandwidth allocation algorithm for heterogeneous wireless networks. Sci China Inf Sci, 2013, 56: 022313
Xu X D, Wang D, Tao X F, et al. Resource pooling for frameless network architecture with adaptive resource allocation. Sci China Inf Sci, 2013, 56: 022314
Xing C W, Fei Z S, Li N, et al. Statistically robust resource allocation for distributed multi-carrier cooperative networks. Sci China Inf Sci, 2013, 56: 022315
Cui Q M, Kang P C, Huang X Q, et al. Optimal power allocation for homogeneous and heterogeneous CA-MIMO systems. Sci China Inf Sci, 2013, 56: 022316
Yu H, Qin H H, Li Y Z, et al. Energy-efficient power allocation for non-regenerative OFDM relay links. Sci China Inf Sci, 2013, 56: 022306
Xu J, Li S C, Qiu L, et al. Energy efficient downlink MIMO transmission with linear precoding. Sci China Inf Sci, 2013, 56: 022309
Chen H, Wu D, Cai Y. Coalition formation game for green resource management in D2D communications. IEEE Commun Lett, 2014, 18: 1395–1398
Taha A-E M. Green wireless networks: a radio resource management perspective. In: Proceedings of IEEE International Conference on Communications, Ottawa, 2012. 5998–6002
Davaslioglu K, Ayanoglu E. Quantifying potential energy efficiency gain in green cellular wireless networks. IEEE Commun Surv Tut, 2014, 16: 2065–2091
Hossain M F, Munasinghe K S, Jamalipour A. An eco-inspired energy efficient access network architecture for next generation cellular systems. In: Proceedings of IEEE Wireless Communications and Networking Conference, Cancun, 2011. 992–997
Wu J, Zhou S, Niu Z S. Traffic-aware base station sleeping control and power matching for energy-delay tradeoffs in green cellular networks. IEEE Trans Wirel Commun, 2013, 12: 4196–4209
Niu Z S, Wu Y Q, Gong J, et al. Cell zooming for cost-efficient green cellular networks. IEEE Commun Mag, 2010, 48: 74–79
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, Z., Zhang, Z., Ding, Z. et al. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci. China Inf. Sci. 58, 1–20 (2015). https://doi.org/10.1007/s11432-015-5293-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-015-5293-y
Keywords
- 5G
- software defined network
- non-orthogonal multiple access
- massive MIMO
- full duplex
- device-to-device communications
- millimeter wave communications
- cognitive radio