Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Computerized Classification of Pneumoconiosis on Digital Chest Radiography Artificial Neural Network with Three Stages

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

It is difficult for radiologists to classify pneumoconiosis from category 0 to category 3 on chest radiographs. Therefore, we have developed a computer-aided diagnosis (CAD) system based on a three-stage artificial neural network (ANN) method for classification based on four texture features. The image database consists of 36 chest radiographs classified as category 0 to category 3. Regions of interest (ROIs) with a matrix size of 32 × 32 were selected from chest radiographs. We obtained a gray-level histogram, histogram of gray-level difference, gray-level run-length matrix (GLRLM) feature image, and gray-level co-occurrence matrix (GLCOM) feature image in each ROI. For ROI-based classification, the first ANN was trained with each texture feature. Next, the second ANN was trained with output patterns obtained from the first ANN. Finally, we obtained a case-based classification for distinguishing among four categories with the third ANN method. We determined the performance of the third ANN by receiver operating characteristic (ROC) analysis. The areas under the ROC curve (AUC) of the highest category (severe pneumoconiosis) case and the lowest category (early pneumoconiosis) case were 0.89 ± 0.09 and 0.84 ± 0.12, respectively. The three-stage ANN with four texture features showed the highest performance for classification among the four categories. Our CAD system would be useful for assisting radiologists in classification of pneumoconiosis from category 0 to category 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fourth International Pneumoconiosis Conference: Report of the Working Party on the Definition of Pneumoconiosis. Geneva,1971

  2. Guidelines for the use of ILO International Classification of Radiographs of Pneumoconiosis: Occupational Safety and Health Series, No.22 (Rev.), International Labor Office. Geneva,1980

  3. Pneumoconiosis exploratory handbook: The Ministry of Labor Industrial Safety and Health Department industrial health division volume: Japan Industrial Safety and Health Association publication. Japan,1980

  4. Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS: Pneumoconiosis: comparison of imaging and pathologic finding. Radiographics 26(1):59–77, 2006

    Article  PubMed  Google Scholar 

  5. Katsuragawa S, Doi K, MacMahon H: Image feature analysis and computer-aided diagnosis in digital radiography: detection and characterization of interstitial lung disease in digital chest radiographs. Med Phys 15:311–319, 1988

    Article  CAS  PubMed  Google Scholar 

  6. Katsuragawa S, Doi K, MacMahon H: Image feature analysis and computer-aided diagnosis in digital radiography: classification of normal and abnormal lungs with interstitial disease in chest images. Med Phys 16:38–44,1989

    Article  CAS  PubMed  Google Scholar 

  7. Katsuragawa S, Doi K, Nakamori N, MacMahon H: Image feature analysis and computer-aided diagnosis in digital radiography: effect of digital parameters on the accuracy of computerized analysis of interstitial disease in digital chest radiographs. Med Phys 17: 72–78, 1990

    Article  CAS  PubMed  Google Scholar 

  8. Katsuragawa S, Doi K, MacMahon H, Nakamori N, Sasaki Y, Fennessy JJ. Fennessy: quantitative computer-aided analysis of lung texture in chest radiographs. Radiographics 10: 257–269, 1990

    Article  CAS  PubMed  Google Scholar 

  9. Katsuragawa S, Doi K, MacMahon H, Monnier-Cholley L, Ishida T, Kobayashi T: Classification of normal and abnormal lungs with interstitial diseases by rule-based method and artificial neural networks. J Digit Imaging 10:108–114, 1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishida T, Katsuragawa S, Kobayashi T, MacMahon H, Doi K: Computerized analysis of interstitial disease in chest radiographs: improvement of geometric-pattern feature analysis. Med Phys 24:915–924, 1997

    Article  CAS  PubMed  Google Scholar 

  11. Ishida T, Katsuragawa S, Ashizawa K, MacMahon H, Doi K: Application of artificial neural networks for quantitative analysis of image data in chest radiographs for detection of interstitial lung disease. J Digit Imaging 11:182–192, 1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arzhaeva Y, Prokop M, Tax DM, De Jong PA, Schaefer-Prokop CM, van Ginneken B: Computer-aided detection of interstitial abnormalities in chest radiographs using a reference standard based on computed tomography. Med Phys 34:4798–4809, 2007

    Article  Google Scholar 

  13. Turner AF, Kruger RP, Thompson WB: Automated computer screening of chest radiographs for pneumoconiosis. Invest Radiol 11:258–266, 1976

    Article  CAS  PubMed  Google Scholar 

  14. R.S. Ledley, H.K. Huang, L.S. Rotolo: A texture analysis method in classification of coal workers’ pneumoconiosis. Comput Biol Med 5:53–67, 1975

    Article  CAS  PubMed  Google Scholar 

  15. Yu P, Xu H, Zhu Y, Yang C, Sun X, Zhao J: An automatic computer-aided detection scheme for pneumoconiosis on digital chest radiographs. J Digit Imaging 24:382–393, 2011

    Article  PubMed  Google Scholar 

  16. Zhu B, Luo W, Li B, Chen B, Yang Q, Xu Y, Wu X, Chen H, Zhang K: The development and evaluation of a computerized diagnosis scheme for pneumoconiosis on digital chest radiographs. Biomed Eng Online 13:141, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhu B, Chen H, Chen B, Xu Y, Zhang K. Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs. J Digit Imaging 27(1):90–97, 2014

    Article  PubMed  Google Scholar 

  18. Delorme S, Keller-Reichenbecher MA, Zuna I, Schlegel W, Van Kaick G: Usual interstitial pneumonia. Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis. Invest Radiol 32:566–574, 1997

    Article  CAS  PubMed  Google Scholar 

  19. Sluimer IC, van Waes PF, Viergever MA, van Ginneken B: Computer-aided diagnosis in high resolution CT of the lungs. Med Phys 30:3081–3090, 2003

    Article  PubMed  Google Scholar 

  20. Uchiyama Y, Katsuragawa S, Abe H, Shiraishi J, Li F, Li Q, Zhang CT, Suzuki K, Doi K: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med Phys 30:2440–2454, 2003

    Article  PubMed  Google Scholar 

  21. Wang J, Li F, Doi K, Li Q: Computerized detection of diffuse lung disease in MDCT: the usefulness of statistical texture features. Phys Med Biol 54:6881–6899, 2009

    Article  PubMed  Google Scholar 

  22. Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K: Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med Phys 33:2642–2653, 2006

    Article  PubMed  Google Scholar 

  23. Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J, Sone S, Doi K: Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol 11:617–629, 2004

    Article  PubMed  Google Scholar 

  24. Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K: False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol 12:191–201, 2005

    Article  PubMed  Google Scholar 

  25. Suzuki K, Armato SG 3rd, Li F, Sone S, Doi K: Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys 30:1602–1617, 2003

    Article  PubMed  Google Scholar 

  26. Suzuki K, Li F, Sone S, Doi K: Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24:1138–1150, 2005

    Article  PubMed  Google Scholar 

  27. Ashizawa K, MacMahon H, Ishida T, Nakamura K, Vyborny CJ, Katsuragawa S, Doi K: Effect of an artificial neural network on radiologists’ performance in the differential diagnosis of interstitial lung disease using chest radiographs. AJR Am J Roentgenol 172:1311–1315, 1999

    Article  CAS  PubMed  Google Scholar 

  28. Fukushima A, Ashizawa K, Yamaguchi T, Matsuyama N, Hayashi H, Kida I, Imafuku Y, Egawa A, Kimura S, Nagaoki K, Honda S, Katsuragawa S, Doi K, Hayashi K: Application of an artificial neural network to high-resolution CT: usefulness in differential diagnosis of diffuse lung disease. AJR Am J Roentgenol 183:297–305, 2004

    Article  PubMed  Google Scholar 

  29. Matake K, Yoshimitsu K, Kumazawa S, Higashida Y, Irie H, Asayama Y, Nakayama T, Kakihara D, Katsuragawa S, Doi K, Honda H: Usefulness of artificial neural network for differential diagnosis of hepatic masses on CT images. Acad Radiol 13:951–962, 2006

    Article  PubMed  Google Scholar 

  30. Yamashita K, Yoshiura T, Arimura H, Mihara F, Noguchi T, Hiwatashi A, Togao O, Yamashita Y, Shono T, Kumazawa S, Higashida Y, Honda H: Performance evaluation of radiologists with artificial neural network for differential diagnosis of intra-axial cerebral tumors on MR images. AJNR Am J Neuroradiol 29:1153–1158, 2008

    Article  CAS  PubMed  Google Scholar 

  31. Okumura E, Kawashita I, Ishida T: Computerized analysis of pneumoconiosis in digital chest radiography: effect of artificial neural network trained with power spectra. J Digit Imaging 24(6):1126–1132, 2011

    Article  PubMed  Google Scholar 

  32. Okumura E, Kawashita I, Ishida T: Development of CAD based on ANN analysis of power spectra for pneumoconiosis in chest radiographs: effect of three new enhancement methods. Radiol Phys Technol 7(2):217–227, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  33. Standard Radiographys of Pneumoconiosis: Electron Medium Edition. The Ministry of Labor. Japan,2011

    Google Scholar 

  34. Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ: Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther 8:2015–2022, 2015.

    PubMed  PubMed Central  Google Scholar 

  35. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5): 1207–1216, 2016.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichiro Okumura.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okumura, E., Kawashita, I. & Ishida, T. Computerized Classification of Pneumoconiosis on Digital Chest Radiography Artificial Neural Network with Three Stages. J Digit Imaging 30, 413–426 (2017). https://doi.org/10.1007/s10278-017-9942-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-017-9942-0

Keywords

Navigation