Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Minimal Subspaces in Tensor Representations

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we introduce and develop the notion of minimal subspaces in the framework of algebraic and topological tensor product spaces. This mathematical structure arises in a natural way in the study of tensor representations. We use minimal subspaces to prove the existence of a best approximation, for any element in a Banach tensor space, by means of a tensor given in a typical representation format (Tucker, hierarchical, or tensor train). We show that this result holds in a tensor Banach space with a norm stronger than the injective norm and in an intersection of finitely many Banach tensor spaces satisfying some additional conditions. Examples using topological tensor products of standard Sobolev spaces are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the meaning of id [j] and id [k] may differ: in the second line of (2.7b), (id [k]A k )∈L(V,V [k] a W k ) and (id [j]A j )∈L(V [k] a W k ,V [j,k] a W j a W k ) (cf. (2.5b)), whereas in the third one (id [j]A j )∈L(V,V [j] a W j ) and (id [k]A k )∈L(V [j] a W j ,V [j,k] a W k a W j ).

  2. Recall that an elementary tensor is a tensor of the form v 1⊗⋯⊗v d .

  3. In (3.1a) it suffices to have the terms for n=0 and n=N. The derivatives are to be understood as weak derivatives.

  4. We recall that the definition of \(U_{j}^{\mathrm{IV}}(\mathbf{v})\) requires the definition of a norm on V [j]. The following arguments will be based on \(U_{j}^{\mathrm{III}}(\mathbf{v})\).

  5. Here, infinite dimensions are identified and not considered as possibly different infinite cardinalities.

References

  1. A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids, J. Non-Newton. Fluid Mech. 139(3), 153–176 (2006).

    Article  MATH  Google Scholar 

  2. C.J. Appellof, E.R. Davidson, Strategies for analyzing data from video fluorometric monitoring of liquid-chromatographic effluents, Anal. Chem. 53(13), 2053–2056 (1981).

    Article  Google Scholar 

  3. G. Berkooz, P. Holmes, J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech. 25, 539–575 (1993).

    Article  MathSciNet  Google Scholar 

  4. J.M. Borwein, Proximality and Chebyshev sets, Optim. Lett. 1, 21–32 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Cancès, V. Ehrlacher, T. Lelievre, Convergence of a greedy algorithm for high-dimensional convex nonlinear problems. Math. Models Methods Appl. Sci. 21, 2433–2467 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. J.D. Carroll, J.J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition, Psychometrika 35, 283–319 (1970).

    Article  MATH  Google Scholar 

  7. V. de Silva, L.-H. Lim, Tensor rank and ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008).

    Article  MathSciNet  Google Scholar 

  8. R.A. DeVore, G.G. Lorentz, Constructive Approximation (Springer, Berlin, 1993).

    MATH  Google Scholar 

  9. A. Doostan, G. Iaccarino, A least-squares approximation of partial differential equations with high-dimensional random inputs, J. Comput. Phys. 228(12), 4332–4345 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Edelstein, Weakly proximinal sets, J. Approx. Theory 18, 1–8 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Falcó, Algorithms and numerical methods for high dimensional financial market models, Rev. Econ. Financ. 20, 51–68 (2010).

    Google Scholar 

  12. W.H. Greub, Linear Algebra, 4th edn. Graduate Text in Mathematics (Springer, Berlin, 1981)

    MATH  Google Scholar 

  13. A. Grothendieck, Résumé de la théorie métrique des produit tensoriels topologiques, Bol. Soc. Mat. São Paulo 8, 1–79 (1953/56).

    MathSciNet  Google Scholar 

  14. W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus (Springer, Berlin, 2012).

    Book  MATH  Google Scholar 

  15. W. Hackbusch, S. Kühn, A new scheme for the tensor representation, J. Fourier Anal. Appl. 15, 706–722 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. F.L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys. 6, 164–189 (1927).

    MATH  Google Scholar 

  17. R. Hübener, V. Nebendahl, W. Dür, Concatenated tensor network states, New J. Phys. 12, 025004 (2010).

    Article  Google Scholar 

  18. T.G. Kolda, B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51, 455–500 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. De Lathauwer, J. Vandewalle, Dimensionality reduction in higher-order signal processing and rank—(r 1,r 2,…,r n ) reduction in multilinear algebra, Linear Algebra Appl. 391, 31–55 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. W.A. Light, E.W. Cheney, Approximation Theory in Tensor Product Spaces. Lect. Notes Math., vol. 1169 (Springer, Berlin, 1985).

    MATH  Google Scholar 

  21. R. Meise, D. Vogt, Introduction to Functional Analysis (Clarendon, Oxford, 1997).

    MATH  Google Scholar 

  22. A. Nouy, A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput. Methods Appl. Mech. Eng. 96(45–48), 4521–4537 (2007).

    Article  MathSciNet  Google Scholar 

  23. A. Nouy, Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems, Arch. Comput. Methods Eng. 17(4), 403–434 (2010).

    Article  MathSciNet  Google Scholar 

  24. I.V. Oseledets, E.E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl. 432, 70–88 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Simon, Uniform crossnorms, Pac. J. Math. 46, 555–560 (1973).

    MATH  Google Scholar 

  26. L.R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika 31, 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  27. A. Uschmajew, Convex maximization problems on non-compact stiefel manifolds with application to orthogonal tensor approximations, Numer. Math. 115, 309–331 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  28. M.A.O. Vasilescu, D. Terzopoulos, Multilinear analysis of image ensembles: tensorfaces, in ECCV 2002: Proceedings of the 7th European Conference on Computer Vision. Lecture Notes in Comput. Sci., vol. 2350 (Springer, Berlin, 2002), pp. 447–460.

    Chapter  Google Scholar 

  29. G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett. 91, 147902 (2003).

    Article  Google Scholar 

  30. H. Wang, N. Ahuja, Compact representation of multidimensional data using tensor rank-one decomposition, in ICPR 2004: Proceedings of the 17th International Conference on Pattern Recognition, vol. 1 (2004), pp. 44–47.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the PRCEU-UCH30/10 grant of the Universidad CEU Cardenal Herrera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hackbusch.

Additional information

Communicated by Wolfgang Dahmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcó, A., Hackbusch, W. On Minimal Subspaces in Tensor Representations. Found Comput Math 12, 765–803 (2012). https://doi.org/10.1007/s10208-012-9136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9136-6

Keywords

Mathematics Subject Classification (2010)

Navigation