Abstract
Three alternating conjugated polymers, namely PFTP, PCzTP, and PSiTP, which combine a thieno[3,4-b]pyrazine (TP) unit with different benzene-based donor units such as 9,9-dioctylfluorene, 9-heptadecyl-9H-carbazole and 5,5-dioctyl-5H-dibenzo[b,d]silole, were synthesized in good yield (>85%) and high molecular weight up to Mn=5.82×104via direct arylation polymerization (DArP). All the resultant polymers exhibit moderate bandgap of about 1.80 eV and strong deep red/near-infrared emitting in the solid state. Among them, the PSiTP-based electroluminescence (EL) devices with an architecture of ITO/PEDOT:PSS/PTAA/emitting layer/TPBi/LiF/Al give the best performance with a maximum luminance of 2543 cd/m2 at 478 mA/cm2. This work expands the application scope of high-performance conjugated polymers which can be synthesized by DArP.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zampetti, A.; Minotto, A.; Cacialli, F. Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv. Funct. Mater. 2019, 29, 1807623.
Ouali, M. I.; Dumur, F. Recent advances on metal-based near-infrared and infrared emitting OLEDs. Molecules 2019, 24, 1412.
Huang, J.; Liu, Q.; Zou, J.; Zhu, X.; Li, A.; Li, J.; Wu, S.; Peng, J.; Cao, Y.; Xia, R.; Bradley, D. D. C.; Roncali, J. Electroluminescence and laser emission of soluble pure red fluorescent molecular glasses based on dithienylbenzothiadiazole. Adv. Funct. Mater. 2009, 19, 2978–2986.
Qin, W.; Ding, D.; Liu, J.; Yuan, W.; Hu, Y.; Liu, B.; Tang, B. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012, 22, 771–779.
Stender, B.; Völker, S. F.; Lambert, C.; Pflaum, J. Optoelectronic processes in squaraine dye-doped OLEDs for emission in the near-infrared. Adv. Mater. 2013, 25, 2943–2947.
Jiang, J.; Xu, Z.; Zhou, J.; Hanif, M.; Jiang, Q.; Hu, D.; Zhao, R.; Wang, C.; Liu, L.; Ma, D.; Ma, Y.; Cao, Y. Enhanced π conjugation and donor/acceptor interactions in D-A-D type emitter for highly efficient near-infrared organic light-emitting diodes with an emission peak at 840 nm. Chem. Mater. 2019, 31, 6499–6505.
Lombeck, F.; Di, D.; Yang, L.; Meraldi, L.; Athanasopoulos, S.; Credgington, D.; Sommer, M.; Friend, R. H. PCDTBT: from polymer photovoltaics to light-emitting diodes by side-chain-controlled luminescence. Macromolecules 2016, 49, 9382–9387.
Murto, P.; Minotto, A.; Zampetti, A.; Xu, X.; Andersson, M.; Cacialli, F.; Wang, E. Triazolobenzothiadiazole-based copolymers for polymer light-emitting diodes: pure near-infrared emission via optimized energy and charge transfer. Adv. Opt. Mater. 2016, 4, 2068–2076.
Sun, M.; Jiang, X.; Liu, W.; Zhu, T.; Huang, F.; Cao, Y. Selenophene and fluorene based narrow band gap copolymers with Eg = 1.41 eV for near infrared polymer light emitting diodes. Syn. Met. 2012, 162, 1406–1410.
Zhang, Q. T.; Tour, J. M. Alternating donor/acceptor repeat units in polythiophenes. Intramolecular charge transfer for reducing band gaps in fully substituted conjugated polymers. J. Am. Chem. Soc. 1998, 120, 5355–5362.
Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Highly efficient near-infrared organic light-emitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative exciton. Angew. Chem. Int. Ed. 2014, 53, 2119–2123.
Ellinger, S.; Graham, K. R.; Shi, P.; Farley, R. T.; Steckler, T. T.; Brookins, R. N.; Taranekar, P.; Mei, J.; Padilha, L. A.; Ensley, T. R.; Hu, H.; Webster, S.; Hagan, D. J.; Stryland, E. W. V.; Schanze, K. S.; Reynolds, J. R. Donor-acceptor-onnor-based π-coujugeted oligomers for nonlinear optics and near-IR emission. Chem. Mater. 2011, 23, 3805–3817.
Parker, T. C.; Patel, D. G.; Moudgil, K.; Barlow, S.; Risko, C.; Bredas, J. L.; Reynolds, J. R.; Marder, S. R. Heteroannulated acceptors based on benzothiadiazole. Mater. Horiz. 2015, 2, 22–36.
Liu, C.; Wang, K.; Gong, X.; Heeger, A. J. Low bandgap semiconducting polymers for polymeric photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846.
Zhang, Z.; Wang, J. Structures and properties of conjugated donor-acceptor copolymers for solar cell applications. J. Mater. Chem. 2012, 22, 4178–4187.
Rasmussen, S. C.; Schwiderski, R. L.; Mulholland, M. E. Thieno[3,4-b]pyrazines and their applications to low band gap organic materials. Chem. Commun. 2011, 47, 11394–11410.
Wen, L.; Nietfeld, J. P.; Amb, C. M.; Rasmussen, S. C. Synthesis and characterization of new 2,3-disubstituted thieno[3,4-b]pyrazines: tunable building blocks for low band gap conjugated materials. J. Org. Chem. 2008, 73, 8529–8536.
Wen, L.; Heth, C. L.; Rasmussen, S. C. Thieno[3,4-b]pyrazine-based oligothiophenes: simple models of donor-acceptor polymeric materials. Phys. Chem. Chem. Phys. 2014, 16, 7231–7240.
Kitamura, C.; Tanaka, S.; Yamashita, Y. Synthesis of new narrow bandgap polymers based on 5,7-di(2-thienyl) thieno[3,4-b]pyrazine and its derivatives. Chem. Commun. 1994, 13, 1585–1586.
Espinet, P.; Echavarren, A. M. The mechanisms of the Stille reaction. Angew. Chem. Int. Ed. 2004, 43, 4704–4734.
Petersen, M. H.; Hagemann, O.; Nielsen, K. T.; Jrgensen, M.; Krebs, F. C. Low band gap poly-thienopyrazines for solar cells-introducing the 11-thia-9,13-diaza-cyclopenta[b] triphenylenes. Sol. Energy Mater. Sol. Cells 2007, 91, 996–1009.
Cheng, Y. J.; Luh, T. Y. Synthesizing optoelectronic heteroaromatic conjugated polymers by cross-coupling reactions. J. Organomet. Chem. 2004, 689, 4137–4148.
Wu, W. C. Liu, C. L.; Chen, W. C. Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications. Polymer 2006, 47, 527–538.
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2487.
Abdo, N. I.; EI-Shehawy, A. A.; El-Barbary, A. A.; Lee, J. S. Palladium-catalyzed direct C-H arylation of thieno[3,4-b]pyrazines: synthesis of advanced oligomeric and polymeric materials. Eur. J. Org. Chem. 2012, 2012, 5540–5551.
Culver, E. W.; Anderson, T. E.; Navarrete, J. T. L.; Delgado, M. C. R.; Rasmussen, S. C. Poly(thieno[3,4-b]pyrazine-alt-2,1,3-bnnzo-thiadiazole)s: a new design paradigm in low band gap polymers. ACS Macro Lett. 2018, 7, 1215–1219.
Anderson, T. E.; Culver, E. W.; Almyahi, F.; Dastoor, P. C.; Rasmussen, S. C. Poly(2,3-dieexylthirno[3,4-b]pyrazine-alt-2,3-dihexylquinoxaline): processible, low-bandgap, ambipolar-acceptor frameworks via direct arylation polymerization. Synlett 2018, 29, 2542–2546.
Pouliot, J. R.; Grenier, F.; Blaskovits, J. T.; Beaupré, S.; Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 2016, 116, 14225–14274.
Gobalasingham, N. S.; Thompson, B. C. Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers. Prog. Polym. Sci. 2018, 83, 135–201.
Phan, S.; Luscombe, C. K. Recent advances in the green, sustainable synthesis of semiconducting polymers. Trends Chem. 2019, 1, 670–681.
Blaskovits, J. T.; Leclerc, M. C-H activation as a shortcut to conjugated polymer synthesis. Macromol. Rapid Commun. 2018, 40, 1800512.
Wakioka, M.; Kitano, Y.; Ozawa, F. A highly efficient catalytic system for polycondensation of 2,7-dibromo-9,9-dioctylfluorene and 1,2,4,5-tetrafluorobenzene via direct arylation. Macromolecules 2013, 46, 370–374.
Wen, L.; Duck, B. C.; Dastoor, P. C.; Rasmussen, S. C. Poly(2,3-dihexylthieno[3,4-b]pyrazine) via GRIM polymerization: simple preparation of a solution processable, low-band-gap conjugated polymer. Macromolecules 2008, 41, 4576–4578.
Tamura, H.; Yamanaka, S.; Matsuda, K.; Konishi, T. Synthesis of low bandgap π-conjugated polymer containing thienopyrazine in the polymer backbone. Jpn. J polym. Sci. 1998, 55, 277–283.
Karsten, B. P.; Viani, L.; Gierschner, J.; Cornil, J.; Janssen, R. A. J. On the origin of small band gaps in alternating thiophenethienopyrazine oligomers. J. Phys Chem. A 2009, 113, 10343–10350.
Wang, E.; Li, C.; Mo, Y.; Zhang, Y.; Ma, G.; Shi, W.; Peng, J.; Yang, W.; Cao, Y. Poly(3,6-silafluorene-co-2,7-fluorene)-based high-efficiency and color-pure blue light-emitting polymers with extremely narrow band-width and high spectral stability. J. Mater. Chem. 2006, 16, 4133–4140.
Jenekhe, S. A.; Lu, L.; Alam, M. M. New conjugated polymers with donor-acceptor architectures: synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules 2001, 34, 7315–7324.
Zhu, Y.; Champion, R. D.; Jenekhe, S. A. Conjugated donor-acceptor copolymer semiconductors with large intramolecular charge transfer: synthesis, optical properties, electrochemistry, and field effect carrier mobility of thienopyrazine-based copolymers. Macromolecules 2006, 39, 8712–8719.
Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.; Cao, Y. High-efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole. Macromolecules 2004, 37, 1211–1218.
Yen, W. C.; Pal, B.; Yang, J. S.; Hung, Y. C.; Lin, S. T.; Chao, C. Y.; Su, W. F. Synthesis and characterization of low bandgap copolymers based on indenofluorene and thiophene derivative. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5044–5056.
Khammultri, P.; Kitisriworaphan, W.; Chasing, P.; Namuangruk, S.; Sudyoadsuka, T.; Promarak, V. Efficient white light-emitting polymers from dual thermally activated delayed fluorescence chromophores for non-doped solution processed white electroluminescent devices. Polym. Chem. 2021, 12, 1030–1039.
Deng, W.; Qin, Y.; Lin, S.; Song, D.; Xu, S.; Wang, H.; Dai, W.; Luo, X. Side chain triphenylamine-based conjugated polymers for the preparation of efficient heterojunction solar cells. J. Mater. Sci. Mater. El. 2019, 30, 2235–2245.
Zhan, X. W.; Risko, C.; Amy, F.; Chan, C.; Zhao, W.; Barlow, S.; Kahn, A.; Brédas, J. L.; Marder, S. R. Electron affinities of 1,1-diaryl-2,3,4,5-tetraphenylsiloles: direct measurements and comparison with experimental and theoretical estimates. J. Am. Chem. Soc. 2005, 127, 9021–9029.
Udagawa, K.; Sasabe, H.; Cai, C.; Kido, J. Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30%. Adv. Mater. 2014, 26, 5062–5066.
Li, W.; Li, J.; Liu, D.; Li, D.; Wang, F. Cyanopyridine based bipolar host materials for green electrophosphorescence with extremely low turn-on voltages and high power efficiencies. ACS Appl. Mater. Interfaces 2016, 8, 21497–21504.
Beaupré, S.; Boudreault, P. L. T.; Leclerc, M. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives. Adv. Mater. 2010, 22, E6–E27.
Wang, E. G.; Li, C.; Zhuang, W. L.; Peng, J. B.; Cao, Y. High-efficiency red and green light-emitting polymers based on a novel wide bandgap poly(2,7-silafluorene). J. Mater. Chem. 2008, 18, 797–801.
Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (Nos. 21604063 and 52173010), and the Program for Prominent Young College Teachers of Tianjin Educational Committee.
Author information
Authors and Affiliations
Corresponding author
Additional information
Notes
The authors declare no competing financial interest.
Electronic Supplementary Information
10118_2022_2661_MOESM1_ESM.pdf
Synthesis of Thieno[3,4-b]pyrazine-based Alternating Conjugated Polymers via Direct Arylation for Near-infrared OLED Applications
Rights and permissions
About this article
Cite this article
He, ZW., Zhang, Q., Li, CX. et al. Synthesis of Thieno[3,4-b]pyrazine-based Alternating Conjugated Polymers via Direct Arylation for Near-infrared OLED Applications. Chin J Polym Sci 40, 138–146 (2022). https://doi.org/10.1007/s10118-022-2661-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10118-022-2661-0